Improve MIP optimization and add log export feature

This commit is contained in:
dmy
2026-01-08 15:08:04 +08:00
parent ebd5883dbf
commit 04a5e19451
4 changed files with 215 additions and 9 deletions

110
mip.py
View File

@@ -135,14 +135,51 @@ def design_with_mip(
def cluster_var(k):
return pulp.LpVariable(f"cluster_{k}", cat="Binary")
# 目标函数:最小化总投资(近似为风机到升压站的总距离)
prob += pulp.lpSum(
[
dist_matrix_full[0, i + 1] * assign_var(i, k)
for i in range(n_turbines)
for k in range(max_clusters)
]
)
def cluster_connection_var(k):
return pulp.LpVariable(f"cluster_connection_{k}", cat="Binary")
turbine_coords = turbines[["x", "y"]].values
turbine_powers = turbines["power"].values
# Calculate cost per meter for cluster-to-substation connections
# Higher power clusters need thicker cables = higher cost
cost_per_meter_per_mw = 1000 # Base cost per MW per meter (can be adjusted)
# Objective function: minimize total investment including:
# 1. Intra-cluster connections (estimated using pairwise distances)
# 2. Cluster-to-substation connections (based on distance and power)
objective_terms = []
# Intra-cluster connection costs (estimated)
for k in range(max_clusters):
for i in range(n_turbines):
for j in range(i + 1, n_turbines):
# Only count if both turbines are in the same cluster
# This is a simplified approximation of MST cost
both_in_cluster = assign_var(i, k) + assign_var(j, k) - 1
distance_ij = np.linalg.norm(turbine_coords[i] - turbine_coords[j])
objective_terms.append(distance_ij * both_in_cluster * 0.5)
# Cluster-to-substation connection costs
for k in range(max_clusters):
cluster_power = pulp.lpSum(
[turbine_powers[i] * assign_var(i, k) for i in range(n_turbines)]
)
cluster_to_substation_distance = dist_matrix_full[
0, :
] # Distance from each turbine to substation
# Use minimum distance from any turbine in cluster to substation
for i in range(n_turbines):
objective_terms.append(
cluster_to_substation_distance[i + 1]
* assign_var(i, k)
* cost_per_meter_per_mw
* turbine_powers[i]
* 0.001
)
prob += pulp.lpSum(objective_terms)
for i in range(n_turbines):
prob += pulp.lpSum([assign_var(i, k) for k in range(max_clusters)]) == 1
@@ -151,7 +188,7 @@ def design_with_mip(
cluster_power = pulp.lpSum(
[turbines.iloc[i]["power"] * assign_var(i, k) for i in range(n_turbines)]
)
prob += cluster_power <= max_mw * 1.2 * cluster_var(k)
prob += cluster_power <= max_mw * 1.0 * cluster_var(k)
for k in range(max_clusters):
for i in range(n_turbines):
@@ -247,7 +284,62 @@ def design_with_mip(
connections.append((f"turbine_{closest}", "substation", min(dists)))
turbines["cluster"] = cluster_assign
# Check cluster distances
min_cluster_distance = check_cluster_distances(clusters, turbines)
if min_cluster_distance is not None:
print(
f"Cluster validation: Minimum distance between clusters = {min_cluster_distance:.2f} m"
)
if min_cluster_distance < 1000:
print(
f"WARNING: Clusters are very close to each other ({min_cluster_distance:.2f} m < 1000 m)"
)
elif min_cluster_distance < 2000:
print(
f"NOTICE: Clusters are relatively close ({min_cluster_distance:.2f} m)"
)
print(
f"MIP optimization completed successfully, {len(connections)} connections generated"
)
return connections, turbines
def calculate_cluster_centroids(clusters, turbines):
"""Calculate the centroid coordinates for each cluster."""
centroids = {}
for c, members in clusters.items():
if len(members) == 0:
centroids[c] = (0, 0)
else:
coords = turbines.iloc[members][["x", "y"]].values
centroid_x = np.mean(coords[:, 0])
centroid_y = np.mean(coords[:, 1])
centroids[c] = (centroid_x, centroid_y)
return centroids
def check_cluster_distances(clusters, turbines, min_distance_threshold=1000):
"""Check if any clusters are too close to each other."""
if len(clusters) < 2:
return None
centroids = calculate_cluster_centroids(clusters, turbines)
active_clusters = [c for c, members in clusters.items() if len(members) > 0]
min_distance = float("inf")
min_pair = None
for i in range(len(active_clusters)):
for j in range(i + 1, len(active_clusters)):
c1, c2 = active_clusters[i], active_clusters[j]
centroid1 = np.array(centroids[c1])
centroid2 = np.array(centroids[c2])
distance = np.linalg.norm(centroid1 - centroid2)
if distance < min_distance:
min_distance = distance
min_pair = (c1, c2)
return min_distance