Files
windfarm/mip.py

154 lines
4.8 KiB
Python
Raw Normal View History

import numpy as np
import pandas as pd
from scipy.spatial import distance_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from collections import defaultdict
import random
try:
import pulp
except ImportError:
pulp = None
def design_with_mip(
turbines,
substation,
cable_specs=None,
voltage=66000,
power_factor=0.95,
system_params=None,
max_clusters=None,
time_limit=300, # seconds
evaluate_func=None,
total_invest_func=None,
get_max_capacity_func=None,
):
"""
使用混合整数规划(MIP)优化集电线路布局
:param turbines: 风机DataFrame
:param substation: 升压站坐标
:param cable_specs: 电缆规格
:param system_params: 系统参数用于NPV计算
:param max_clusters: 最大簇数默认基于功率计算
:param time_limit: 求解时间限制
:param evaluate_func: 评估函数
:param total_invest_func: 总投资计算函数
:param get_max_capacity_func: 获取最大容量函数
:return: 连接列表和带有簇信息的turbines
"""
if pulp is None:
print(
"WARNING: PuLP library not available. MIP optimization skipped, falling back to MST."
)
from main import design_with_mst
return design_with_mst(turbines, substation)
if get_max_capacity_func:
max_mw = get_max_capacity_func(cable_specs, voltage, power_factor)
else:
max_mw = 100.0 # 默认值
total_power = turbines["power"].sum()
max_clusters = int(np.ceil(total_power / max_mw))
n_turbines = len(turbines)
# 预计算距离矩阵
all_coords = np.vstack([substation, turbines[["x", "y"]].values])
dist_matrix_full = distance_matrix(all_coords, all_coords)
# MIP 模型
prob = pulp.LpProblem("WindFarmCollectorMIP", pulp.LpMinimize)
# 决策变量:风机分配到簇 (binary)
x = pulp.LpVariable.dicts(
"assign", (range(n_turbines), range(max_clusters)), cat="Binary"
)
# 簇使用变量 (binary)
y = pulp.LpVariable.dicts("use_cluster", range(max_clusters), cat="Binary")
# 目标函数:最小化总成本 (简化版:距离成本)
# 这里使用简化成本:簇内距离 + 到升压站距离
prob += pulp.lpSum(
[
dist_matrix_full[i + 1, j + 1] * x[i][k] * x[j][k]
for i in range(n_turbines)
for j in range(n_turbines)
for k in range(max_clusters)
if i < j
]
) + pulp.lpSum(
[
dist_matrix_full[0, i + 1] * y[k] # 假设每个簇连接到升压站
for i in range(n_turbines)
for k in range(max_clusters)
]
)
# 约束:每个风机分配到一个簇
for i in range(n_turbines):
prob += pulp.lpSum([x[i][k] for k in range(max_clusters)]) == 1
# 簇功率约束
for k in range(max_clusters):
prob += (
pulp.lpSum([turbines.iloc[i]["power"] * x[i][k] for i in range(n_turbines)])
<= max_mw * y[k]
)
# 如果簇未使用,则无分配
for k in range(max_clusters):
for i in range(n_turbines):
prob += x[i][k] <= y[k]
# 求解
solver = pulp.PULP_CBC_CMD(timeLimit=time_limit)
status = prob.solve(solver)
if pulp.LpStatus[prob.status] != "Optimal":
print(f"MIP not optimal: {pulp.LpStatus[prob.status]}")
# 返回默认方案,如 MST
from main import design_with_mst
return design_with_mst(turbines, substation)
# 提取结果
cluster_assign = [-1] * n_turbines
for i in range(n_turbines):
for k in range(max_clusters):
if pulp.value(x[i][k]) > 0.5:
cluster_assign[i] = k
break
# 构建连接
clusters = defaultdict(list)
for i, c in enumerate(cluster_assign):
clusters[c].append(i)
connections = []
for c, members in clusters.items():
if len(members) == 0:
continue
coords = turbines.iloc[members][["x", "y"]].values
if len(members) > 1:
dm = distance_matrix(coords, coords)
mst = minimum_spanning_tree(dm).toarray()
for i in range(len(members)):
for j in range(len(members)):
if mst[i, j] > 0:
connections.append(
(
f"turbine_{members[i]}",
f"turbine_{members[j]}",
mst[i, j],
)
)
# 连接到升压站
dists = [dist_matrix_full[0, m + 1] for m in members]
closest = members[np.argmin(dists)]
connections.append((f"turbine_{closest}", "substation", min(dists)))
turbines["cluster"] = cluster_assign
return connections, turbines