Compare commits

...

2 Commits

Author SHA1 Message Date
facat efbf55d531 增加等式满足校验。 2020-06-27 21:01:43 +08:00
facat b926a0c5a7 算法跑通了。 2020-06-27 18:23:29 +08:00
1 changed files with 201 additions and 18 deletions

219
main.py
View File

@ -3,36 +3,219 @@
import math
# 架线时的状态
t_m = 100 # 导线架设时的气温。单位°C
sigma_m = 10 # 架线时初伸长未释放前的最低点水平应力。单位N/mm2
lambda_m = 10 # 导线比载 N/(m.mm)
t_e = 25 # 架线时考虑初伸长的降温取正值。单位°C
# h_i 悬点高差
# l_i 悬点档距
# alpha 导线膨胀系数 1/°C
# E 弹性系数 N/mm2
# _alpha 导线膨胀系数 1/°C
# _elastic 弹性系数 N/mm2
# _t_e 架线时考虑初伸长的降温取正值。单位°C
# lambda_i 计算不平衡张力时导线比载 N/(m.mm)
# sigma_i 计算不平衡张力时最低点水平应力 单位N/mm2
# t_i 计算不平衡张力时导线温度 单位°C
# lambda_m 导线架线时时导线比载 N/(m.mm)
# sigma_m 导线架线时时最低点水平应力 单位N/mm2
# t_m 导线架线时时导线温度 单位°C
def delta_li(h_i, l_i, lambda_i, alpha, E, t_i, sigma_i, lambda_m, t_m, sigma_m):
beta_i = math.atan(h_i / l_i)
t = (
# _lambda_m 导线架线时时导线比载 N/(m.mm)
# _sigma_m 导线架线时时最低点水平应力 单位N/mm2
# _t_m 导线架线时时导线温度 单位°C
def delta_li(
h_i: float,
l_i: float,
lambda_i: float,
_alpha: float,
_elastic: float,
_t_e: float,
t_i: float,
sigma_i: float,
_lambda_m: float,
_t_m: float,
_sigma_m: float,
) -> float:
beta_i = math.atan(h_i / l_i) # 高差角
_delta_li = (
l_i
/ ((math.cos(beta_i) ** 2) * (1 + (lambda_i * l_i / sigma_i) ** 2 / 8))
* (
(l_i * math.cos(beta_i)) ** 2
/ 24
* ((lambda_m / sigma_m) ** 2 - (lambda_i / sigma_i) ** 2)
+ ((sigma_i - sigma_m) / E / math.cos(beta_i))
+ alpha * (t_i + t_e - t_m)
* ((_lambda_m / _sigma_m) ** 2 - (lambda_i / sigma_i) ** 2)
+ ((sigma_i - _sigma_m) / _elastic / math.cos(beta_i))
+ _alpha * (t_i + _t_e - _t_m)
)
)
return _delta_li
# area 导线截面 单位mm2
# sigma_i 第i档内水平应力 单位N/mm2
# b_i 悬垂串沿线路方向水平偏移距离,沿大号方向为正,反之为负。 单位m
# length_i 第i基直线塔串长 单位m
# g_i 第i基直线塔串重 单位N
# h_i 悬垂串处千中垂位置时,,第 i 基对第 i-1 杆塔上导线悬挂点间的高差大号比小号杆塔悬挂点高者h本身为正值反之为负值。
# lambda_i 第i档导线比载 N/(m.mm)
# h_i1 悬垂串处千中垂位置时,第 i+1 基对第 i 杆塔上导线悬挂点间的高差大号比小号杆塔悬挂点高者h本身为正值反之为负值。
# lambda_i1
def fun_sigma_i1(
area: float,
sigma_i: float,
b_i: float,
length_i: float,
g_i: float,
h_i: float,
l_i: float,
lambda_i: float,
h_i1: float,
l_i1: float,
lambda_i1: float,
):
beta_i = math.atan(h_i / l_i)
beta_i1 = math.atan(h_i1 / l_i1)
_sigma_i1 = (
(
g_i / 2 / area
+ lambda_i * l_i / 2 / math.cos(beta_i)
+ lambda_i1 * l_i1 / 2 / math.cos(beta_i1)
+ sigma_i * h_i / l_i
)
+ sigma_i / b_i * math.sqrt(length_i ** 2 - b_i ** 2)
) / (math.sqrt(length_i ** 2 - b_i ** 2) / b_i + h_i1 / l_i1)
return _sigma_i1
# 求解循环。
def cal_loop():
loop_end = 100000 # 最大循环次数
# 架线时的状态
# 取外过无风
string_length = 9.2 # 串长 单位m
string_g = 60 * 9.8 # 串重 单位N
t_m = 15 # 导线架设时的气温。单位°C
t_e = 20 # 架线时考虑初伸长的降温取正值。单位°C
alpha = 0.0000155 # 导线膨胀系数 1/°C
elastic = 95900 # 弹性系数 N/mm2
area = 154.48 # 导线面积 mm2
lambda_m = 14.8129 / area # 导线比载 N/(m.mm)
# 取400m代表档距下
sigma_m = 28517 / area # 架线时初伸长未释放前的最低点水平应力。单位N/mm2
span_count = 3 # 几个档距
# n个档距,n-1个直线塔
h_array = [0, 0, 0]
l_array = [400, 400, 400]
t_array = [15, 15, 15]
lambda_array = [lambda_m, lambda_m, lambda_m]
loop_count = 1
sigma_0 = sigma_m * 0.8
while True:
sigma_0 = sigma_0 + 0.001
sigma_array = [sigma_0, 0, 0]
b_i = 0
delta_l_i_array = []
for i in range(span_count - 1):
h_i = h_array[i]
l_i = l_array[i]
lambda_i = lambda_array[i]
t_i = t_array[i]
sigma_i = sigma_array[i]
_delta_l_i = delta_li(
h_i,
l_i,
lambda_i,
alpha,
elastic,
t_e,
t_i,
sigma_i,
lambda_m,
t_m,
sigma_m,
)
delta_l_i_array.append(_delta_l_i)
b_i += _delta_l_i
length_i = string_length
g_i = string_g
h_i1 = h_array[i + 1]
l_i1 = l_array[i + 1]
lambda_i1 = lambda_array[i + 1]
sigma_i1 = fun_sigma_i1(
area,
sigma_i,
b_i,
length_i,
g_i,
h_i,
l_i,
lambda_i,
h_i1,
l_i1,
lambda_i1,
)
sigma_array[i + 1] = sigma_i1
# print("第{loop_count}轮求解。".format(loop_count=loop_count))
# print(b_i)
loop_count += 1
if math.fabs(b_i) < 1e-5:
print("迭代{loop_count}次找到解。".format(loop_count=loop_count))
print("悬垂串偏移累加bi为{b_i}".format(b_i=b_i))
for i in range(span_count):
print("{i}档导线应力为{tension}".format(i=i, tension=sigma_array[i]))
for i in range(span_count - 1):
print("{i}串偏移值为{bias}".format(i=i, bias=delta_l_i_array[i]))
verify(
area,
h_array,
l_array,
string_length,
string_g,
sigma_array,
delta_l_i_array,
lambda_array,
)
break
if loop_count >= loop_end:
print("!!!未找到解。")
print(sigma_array)
print(b_i)
break
# 检验等式。
def verify(
area: float,
h_array: [float],
l_array: [float],
string_length: [float],
string_g: [float],
sigma_array: [float],
delta_l_i_array: [float],
lambda_array: [float],
):
# 用新版大手册p329页(5-61)最第一个公式校验
for i in range(len(delta_l_i_array)):
sigma_i = sigma_array[i]
sigma_i1 = sigma_array[i + 1]
left_equ = sigma_array[i + 1]
_delta_l_i = delta_l_i_array[i]
lambda_i = lambda_array[i]
lambda_i1 = lambda_array[i + 1]
h_i = h_array[i]
h_i1 = h_array[i + 1]
l_i = l_array[i]
l_i1 = l_array[i + 1]
beta_i = math.atan(h_i / l_i)
beta_i1 = math.atan(h_i1 / l_i1)
w_i = (
lambda_i * l_i / 2 / math.cos(beta_i)
+ sigma_i * h_i / l_i
+ (lambda_i1 * l_i1 / 2 / math.cos(beta_i1) - sigma_i1 * h_i1 / l_i1)
)
right_equ = sigma_i + delta_l_i_array[i] / math.sqrt(
string_length ** 2 - delta_l_i_array[i] ** 2
) * (string_g / 2 / area + w_i)
if math.fabs(right_equ - left_equ) > 1e-4:
print("!!!等式不满足")
return
print("等式满足。")
cal_loop()
print("Finished.")