Compare commits

...

11 Commits

Author SHA1 Message Date
n3040
ba4668e97b 准备修改成通用程序。 2022-08-22 16:09:08 +08:00
dbbba95996 1.重新整理代码
2.收敛条件强制让不等式满足要求
2020-12-14 16:34:23 +08:00
c8c245e717 利用numpy增强数值稳定性 2020-12-14 16:05:17 +08:00
9d4b1e312a 修复indent 2020-12-14 14:51:44 +08:00
54f789e22d 为了加快速度,将symbol公式lambdify成普通python函数 2020-12-14 14:50:55 +08:00
2750267b94 1.增加与手动微分公式比较。
2.牛顿法对初值比较敏感。
2020-12-14 10:31:29 +08:00
b4db8b612e 在自动微分中引用等式检查。 2020-12-13 17:07:53 +08:00
2984fac87b 自动微分收敛了。 2020-12-13 16:57:48 +08:00
ca9c2edacf 修复凑数法,之前计算方法不对。 2020-12-11 21:38:18 +08:00
d83d6a8224 考虑导线分裂数。 2020-06-28 16:33:42 +08:00
2d728e7439 修改收敛判据。 2020-06-28 13:39:18 +08:00
5 changed files with 800 additions and 85 deletions

1
.gitignore vendored
View File

@@ -1 +1,2 @@
venv venv
*.xls

319
auto_differentiation.py Normal file
View File

@@ -0,0 +1,319 @@
# 利用自动微分计算
import datetime
from typing import List
import sympy
import data
import exp
import math
import main
import numpy as np
sympy.init_printing()
# h_i 悬点高差
# l_i 悬点档距
# _alpha 导线膨胀系数 1/°C
# _elastic 弹性系数 N/mm2
# _t_e 架线时考虑初伸长的降温取正值。单位°C
# lambda_i 计算不平衡张力时导线比载 N/(m.mm)
# sigma_i 计算不平衡张力时最低点水平应力 单位N/mm2
# t_i 计算不平衡张力时导线温度 单位°C
# _lambda_m 导线架线时时导线比载 N/(m.mm)
# _sigma_m 导线架线时时最低点水平应力 单位N/mm2
# _t_m 导线架线时时导线温度 单位°C
loop_end = data.loop_end # 最大循环次数
# 架线时的状态
# 取外过无风
string_length = data.string_length # 串长 单位m
string_g = data.string_g # 串重 单位N
t_m_data = data.t_m # 导线架设时的气温。单位°C
t_e_data = data.t_e # 架线时考虑初伸长的降温取正值。单位°C
alpha_data = data.alpha # 导线膨胀系数 1/°C
elastic_data = data.elastic # 弹性系数 N/mm2
area_data = data.area # 导线面积 mm2
lambda_m_data = data.lambda_m # 导线比载 N/(m.mm)
sigma_m_data = data.sigma_m # 架线时初伸长未释放前的最低点水平应力。单位N/mm2
span_count = data.span_count # 几个档距
# n个档距,n-1个直线塔
h_array = data.h_array
l_array = data.l_array
t_data = data.t
conductor_n = data.conductor_n
lambda_i_array = data.lambda_i_array
# TODO: 暂时没考虑荷载变化
symbol_delta_l_i = exp.delta_li()
sigma_i = sympy.symbols("sigma_i")
d_delta_l_i_sigma_i = sympy.diff(symbol_delta_l_i, sigma_i)
fx_d_delta_l_i_sigma_i = exp.get_lambdify_d_delta_l_i_sigma_i(d_delta_l_i_sigma_i)
delta_Li__1 = sympy.symbols(
"delta_Li:{span_count}".format(span_count=data.span_count - 1)
)
delta_Li = (
*delta_Li__1,
sympy.symbols("delta_Li_i"),
)
symbol_sigma_i1 = exp.fun_sigma_i1(delta_Li)
delta_Li_i = sympy.symbols("delta_Li_i")
d_sigma_i1_d_l_i = sympy.diff(symbol_sigma_i1, delta_Li_i)
fx_d_sigma_i1_d_l_i = exp.get_lambdify_d_sigma_i1_d_l_i(d_sigma_i1_d_l_i, delta_Li)
# 一共2n个变量n个delta_Lin个sigma_i
# 分 [
# A B
# C D
# E1 E2
# ]
# 6块
# B为dΔli/dσi
def evaluate_d_delta_l_i_sigma_i(val_delta_l_li, val_sigma_i):
val_list = []
for i in range(span_count):
val = sympy.Float(
fx_d_delta_l_i_sigma_i(
val_delta_l_li[i],
l_array[i],
lambda_i_array[i],
alpha_data,
elastic_data,
t_e_data,
t_data,
lambda_m_data,
t_m_data,
sigma_m_data,
val_sigma_i[i],
math.atan(h_array[i] / l_array[i]),
)
)
# manual_val = exp.manual_diff_delta_li_sigma_i(
# h_array[i],
# l_array[i],
# lambda_m_data,
# lambda_i_array[i],
# val_sigma_i[i],
# sigma_m_data,
# alpha_data,
# t_data,
# t_e_data,
# t_m_data,
# elastic_data,
# )
# if math.fabs(val - manual_val) > 1e-5:
# raise Exception("d_delta_l_i_sigma_i 自动和手动微分不匹配")
val_list.append(val)
return val_list
# C为dσi1dΔli
# C只有n-1行
def evaluate_d_sigma_i1_d_delta_l_i(val_delta_l_li, val_sigma_i):
row = []
for i in range(span_count - 1):
col = []
for j in range(span_count):
if i < j:
col.append(0)
else:
_val_delta_l_li = list(val_delta_l_li)
_val_delta_l_li[-1] = _val_delta_l_li[j] # 把需要求导的Δlj放最后一个位置
_val_delta_l_li[j] = 0
# σi1的第i+1行至倒数第2行全部清0
for k in range(i + 1, len(_val_delta_l_li) - 1):
_val_delta_l_li[k] = 0
_val = sympy.Float(
fx_d_sigma_i1_d_l_i(
string_g / conductor_n,
area_data,
lambda_i_array[i],
lambda_i_array[i + 1],
val_sigma_i[i],
h_array[i],
h_array[i + 1],
l_array[i],
l_array[i + 1],
string_length,
val_sigma_i[i + 1],
math.atan(h_array[i] / l_array[i]),
math.atan(h_array[i + 1] / l_array[i + 1]),
*_val_delta_l_li
)
)
# manual_val = exp.manual_diff_sigma_i1_d_l_i(
# h_array[i],
# l_array[i],
# h_array[i + 1],
# l_array[i + 1],
# string_g / conductor_n,
# area_data,
# lambda_i_array[i],
# lambda_i_array[i + 1],
# val_sigma_i[i],
# string_length,
# math.fsum(val_delta_l_li[0 : i + 1]),
# )
# if math.fabs(manual_val - _val) > 1e-5:
# raise Exception("d_sigma_i1_delta_L_i 自动和手动微分不匹配")
col.append(_val)
row.append(col)
return sympy.Matrix(row)
# D为dΔσi1dσi
# D只有n-1行
def evaluate_d_sigma_i1_d_delta_sigma_i(val_delta_li):
row = []
for i in range(span_count - 1):
col = []
for j in range(span_count):
if i == j:
sum_delta_li = math.fsum(val_delta_li)
_val = -(
(
h_array[i] / l_array[i]
+ ((string_g / conductor_n) ** 2 - sum_delta_li ** 2) ** 0.5
)
/ (
((string_g / conductor_n) ** 2 - sum_delta_li ** 2) ** 0.5
+ h_array[i + 1] / l_array[i + 1]
)
)
col.append(_val)
continue
if i == j - 1:
col.append(1)
continue
col.append(0)
row.append(col)
return sympy.Matrix(row)
def solve():
starttime = datetime.datetime.now()
# 初始化
val_delta_li = [data.string_length / (span_count + 1) for _ in range(span_count)]
val_sigma_i = [sigma_m_data for _ in range(span_count)]
loop = 0
while True:
loop += 1
# print("第{loop}次迭代".format(loop=loop))
if loop >= 20:
break
# A为dΔli/dli
M_A = sympy.eye(span_count)
# B为dΔli/dσi
M_B = sympy.diag(
evaluate_d_delta_l_i_sigma_i(val_delta_li, val_sigma_i), unpack=True
)
# C为dΔσi1dli
M_C = evaluate_d_sigma_i1_d_delta_l_i(val_delta_li, val_sigma_i)
# D为dΔσi1dσi
M_D = evaluate_d_sigma_i1_d_delta_sigma_i(val_delta_li)
E1 = [1 for _ in range(span_count)]
E2 = [0 for _ in range(span_count)]
E = list(E1)
E.extend(E2)
M_E = sympy.Matrix([E])
# 解方程
A = sympy.Matrix([[M_A, M_B], [M_C, M_D], [M_E]])
fx_delta_Li = []
fx_sigma_i1 = []
for i in range(span_count):
fx_delta_Li.append(
val_delta_li[i]
- main.delta_li(
h_array[i],
l_array[i],
lambda_i_array[i],
alpha_data,
elastic_data,
t_e_data,
t_data,
val_sigma_i[i],
lambda_m_data,
t_m_data,
sigma_m_data,
)
)
if i < span_count - 1:
fx_sigma_i1.append(
val_sigma_i[i + 1]
- main.fun_sigma_i1(
area_data,
val_sigma_i[i],
math.fsum(val_delta_li[0 : i + 1]),
string_length,
string_g / conductor_n,
h_array[i],
l_array[i],
lambda_i_array[i],
h_array[i + 1],
l_array[i + 1],
lambda_i_array[i + 1],
)
)
fx_sum_Li = [math.fsum(val_delta_li)]
b_list = []
b_list.extend(fx_delta_Li)
b_list.extend(fx_sigma_i1)
b_list.extend(fx_sum_Li)
AA = np.array(A.tolist(), dtype=np.float64)
b = np.array(b_list, dtype=np.float64)
x = np.linalg.solve(-AA, b)
x_list = x
# 强制要求等式满足
abs_min: List[float] = [
math.fabs(_x) for _x in [*x_list, *fx_delta_Li, *fx_sigma_i1]
]
abs_min.sort()
if abs_min[-1] < 1e-5:
break
# print("最大偏差{max_dx}".format(max_dx=abs_min[-1]))
# 更新变量
for i in range(span_count):
val_delta_li[i] += x_list[i]
val_sigma_i[i] += x_list[i + span_count]
if loop >= loop_end:
print("不收敛")
else:
print("经过{loop}次迭代收敛,最大偏差{bias}".format(loop=loop, bias=abs_min[-1]))
# print(val_delta_li)
# print(val_sigma_i)
verify(val_delta_li, val_sigma_i)
endtime = datetime.datetime.now()
# print('执行时间{t}'.format(t=(endtime-starttime).microseconds/1000))
pass
def verify(val_delta_li, val_sigma_i):
main.verify(
area_data,
h_array,
l_array,
string_length,
string_g / conductor_n,
val_sigma_i,
val_delta_li,
lambda_i_array,
t_data,
alpha_data,
elastic_data,
t_e_data,
lambda_m_data,
t_m_data,
sigma_m_data,
1e-5,
)
solve()
print("Finished.")

121
data.py
View File

@@ -1,18 +1,117 @@
loop_end = 100000 # 最大循环次数 # # loop_end = 10000000 # 最大循环次数
# loop_end = 1000000 # 最大循环次数
# # 架线时的状态
# # 取外过无风
# string_length = 9.2 # 串长 单位m
# string_g = 60 * 9.8 # 串重 单位N
# t_m = 15 # 导线架设时的气温。单位°C
# t_e = 20 # 架线时考虑初伸长的降温取正值。单位°C
# alpha = 0.0000155 # 导线膨胀系数 1/°C
# elastic = 95900 # 弹性系数 N/mm2
# area = 154.48 # 导线面积 mm2
# lambda_m = 14.8129 / area # 导线比载 N/(m.mm)
# lambda_i_array = [
# lambda_m * 0.9,
# lambda_m * 1.2,
# lambda_m,
# lambda_m,
# lambda_m,
# lambda_m * 0.9,
# lambda_m * 1.5,
# lambda_m,
# lambda_m,
# lambda_m,
# lambda_m,
# lambda_m,
# lambda_m,
# lambda_m * 0.9,
# lambda_m * 1.3,
# ]
# # 取400m代表档距下
# sigma_m = 28517 / area # 架线时初伸长未释放前的最低点水平应力。单位N/mm2
# span_count = 14 # 几个档距
# # n个档距,n-1个直线塔
# h_array = [
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# 0,
# ]
# l_array = [
# 400,
# 300,
# 300,
# 500,
# 300,
# 400,
# 300,
# 300,
# 500,
# 300,
# 300,
# 500,
# 300,
# 400,
# 300,
# ]
# t = 15
# epsilon = 1e-4 # 收敛判据
# conductor_n = 6 # 导线分裂数
loop_end = 5000000 # 最大循环次数
# 架线时的状态 # 架线时的状态
# 取外过无风 # 取外过无风
string_length = 9.2 # 串长 单位m string_length = 0.5 # 串长 单位m
string_g = 60 * 9.8 # 串重 单位N string_g = 30 * 9.8 # 串重 单位N
t_m = 15 # 导线架设时的气温。单位°C t_m = -25 # 导线架设时的气温。单位°C
t_e = 20 # 架线时考虑初伸长的降温取正值。单位°C t_e = 0 # 架线时考虑初伸长的降温取正值。单位°C
alpha = 0.0000155 # 导线膨胀系数 1/°C alpha = 0.0000155 # 导线膨胀系数 1/°C
elastic = 95900 # 弹性系数 N/mm2 elastic = 95900 # 弹性系数 N/mm2
area = 154.48 # 导线面积 mm2 area = 154.48 # 导线面积 mm2
lambda_m = 14.8129 / area # 导线比载 N/(m.mm) lambda_m = 7.3256 / area # 导线比载 N/(m.mm)
lambda_i_array = [
14.7012 / area,
14.7012 / area,
14.7012 / area,
8.8007 / area,
14.7012 / area,
14.7012 / area,
14.7012 / area,
]
# 取400m代表档距下 # 取400m代表档距下
sigma_m = 28517 / area # 架线时初伸长未释放前的最低点水平应力。单位N/mm2 sigma_m = 17449 / area # 架线时初伸长未释放前的最低点水平应力。单位N/mm2
span_count = 3 # 几个档距 span_count = 7 # 几个档距
# n个档距,n-1个直线塔 # n个档距,n-1个直线塔
h_array = [0, 0, 0] h_array = [
l_array = [200, 400, 600] 0,
t_array = [15, 15, 15] 0,
0,
0,
0,
0,
0,
]
l_array = [
703,
720,
587,
620,
539,
450,
611,
]
t = 40
epsilon = 1e-4 # 收敛判据
conductor_n = 1 # 导线分裂数

273
exp.py Normal file
View File

@@ -0,0 +1,273 @@
import sympy
import math
# h 悬点高差
# l_i 悬点档距
# alpha 导线膨胀系数 1/°C
# elastic 弹性系数 N/mm2
# t_e 架线时考虑初伸长的降温取正值。单位°C
# lambda_i 计算不平衡张力时导线比载 N/(m.mm)
# sigma_i 计算不平衡张力时最低点水平应力 单位N/mm2
# t_i 计算不平衡张力时导线温度 单位°C
# lambda_m 导线架线时时导线比载 N/(m.mm)
# sigma_m 导线架线时时最低点水平应力 单位N/mm2
# t_m 导线架线时时导线温度 单位°C
def delta_li():
(
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
sigma_i,
beta_i,
) = sympy.symbols(
"""
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
sigma_i,
beta_i,"""
)
_delta_li = delta_l_i - (
l_i
/ ((sympy.cos(beta_i) ** 2) * (1 + (lambda_i * l_i / sigma_i) ** 2 / 8))
* (
(l_i * sympy.cos(beta_i)) ** 2
/ 24
* ((lambda_m / sigma_m) ** 2 - (lambda_i / sigma_i) ** 2)
+ ((sigma_i - sigma_m) / E / sympy.cos(beta_i))
+ alpha * (t_i + t_e - t_m)
)
)
return _delta_li
# area 导线截面 单位mm2
# sigma_i 第i档内水平应力 单位N/mm2
# b_i 悬垂串沿线路方向水平偏移距离,沿大号方向为正,反之为负。 单位m
# stringlen_i 第i基直线塔串长 单位m
# G_i 第i基直线塔串重 单位N
# h_i 悬垂串处千中垂位置时,,第 i 基对第 i-1 杆塔上导线悬挂点间的高差大号比小号杆塔悬挂点高者h本身为正值反之为负值。
# lambda_i 第i档导线比载 N/(m.mm)
# h_i1 悬垂串处千中垂位置时,第 i+1 基对第 i 杆塔上导线悬挂点间的高差大号比小号杆塔悬挂点高者h本身为正值反之为负值。
# lambda_i1
def fun_sigma_i1(delta_Li):
(
G_i,
A,
lambda_i,
lambda_i1,
sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
sigma_i1,
beta_i,
beta_i1,
) = sympy.symbols(
"""
G_i,
A,
lambda_i,
lambda_i1,
sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
sigma_i1,
beta_i,
beta_i1
"""
)
def b_i():
_t = sympy.Float(0)
for f in delta_Li:
_t += f
return _t
_sigma_i1 = sigma_i1 - (
(
G_i / 2 / A # G_i传入时已考虑导线分裂数
+ lambda_i * l_i / 2 / sympy.cos(beta_i)
+ lambda_i1 * l_i1 / 2 / sympy.cos(beta_i1)
+ sigma_i * h_i / l_i
)
+ sigma_i / b_i() * sympy.sqrt(stringlen_i ** 2 - b_i() ** 2)
) / (sympy.sqrt(stringlen_i ** 2 - b_i() ** 2) / b_i() + h_i1 / l_i1)
return _sigma_i1
def manual_diff_delta_li_sigma_i(
h_i, l_i, lambda_m, lambda_i, sigma_i, sigma_m, alpha, t_i, t_e, t_m, E
):
beta_i = math.atan(h_i / l_i)
A = (
(l_i * math.cos(beta_i)) ** 2
/ 24
* ((lambda_m / sigma_m) ** 2 - (lambda_i / sigma_i) ** 2)
+ (sigma_i - sigma_m) / E / math.cos(beta_i)
+ alpha * (t_i + t_e - t_m)
)
B = 1 + (lambda_i * l_i / sigma_i) ** 2 / 8
dA_dsigma_i = ((l_i * math.cos(beta_i)) ** 2) / 24 * 2 * lambda_i ** 2 * (
sigma_i ** (-3)
) + 1 / E / math.cos(beta_i)
dB_dsigma_i = -2 * (lambda_i * l_i) ** 2 / 8 * (sigma_i ** (-3))
_t = -l_i / (math.cos(beta_i) ** 2) * (dA_dsigma_i * B - A * dB_dsigma_i) / (B ** 2)
return _t
def manual_diff_sigma_i1_d_l_i(
h_i, l_i, h_i1, l_i1, Gi, A, lambda_i, lambda_i1, sigma_i, stringlen, b_i
):
beta_i = math.atan(h_i / l_i)
beta_i1 = math.atan(h_i1 / l_i1)
A = (
Gi / 2 / A
+ lambda_i * l_i / 2 / math.cos(beta_i)
+ lambda_i1 * l_i1 / 2 / math.cos(beta_i1)
+ sigma_i * h_i / l_i
+ sigma_i / b_i * ((stringlen ** 2 - b_i ** 2) ** 0.5)
)
B = ((stringlen ** 2 - b_i ** 2) ** 0.5) / b_i + h_i1 / l_i1
dA_d_delta_L1 = (
sigma_i
* (
-((stringlen ** 2 - b_i ** 2) ** -0.5) * (b_i ** 2)
- (stringlen ** 2 - b_i ** 2) ** 0.5
)
/ (b_i ** 2)
)
dB_d_delta_L1 = (
1
/ (b_i ** 2)
* (
-((stringlen ** 2 - b_i ** 2) ** -0.5) * (b_i ** 2)
- (stringlen ** 2 - b_i ** 2) ** 0.5
)
)
_t = -(dA_d_delta_L1 * B - A * dB_d_delta_L1) / (B ** 2)
return _t
def get_lambdify_d_delta_l_i_sigma_i(_d_delta_l_i_sigma_i):
(
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
_sigma_i,
beta_i,
) = sympy.symbols(
"""
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
sigma_i,
beta_i
"""
)
return sympy.lambdify(
[
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
_sigma_i,
beta_i,
],
_d_delta_l_i_sigma_i,
)
def get_lambdify_d_sigma_i1_d_l_i(_d_sigma_i1_d_l_i, delta_Li):
(
G_i,
A,
lambda_i,
lambda_i1,
_sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
_sigma_i1,
beta_i,
beta_i1,
) = sympy.symbols(
"""
G_i,
A,
lambda_i,
lambda_i1,
sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
sigma_i1,
beta_i,
beta_i1,
"""
)
return sympy.lambdify(
[
G_i,
A,
lambda_i,
lambda_i1,
_sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
_sigma_i1,
beta_i,
beta_i1,
*delta_Li,
],
_d_sigma_i1_d_l_i,
)

111
main.py
View File

@@ -3,6 +3,7 @@
import math import math
import data import data
import numpy as np
# h_i 悬点高差 # h_i 悬点高差
# l_i 悬点档距 # l_i 悬点档距
@@ -19,13 +20,13 @@ import data
def delta_li( def delta_li(
h_i: float, h_i: float,
l_i: float, l_i,
lambda_i: float, lambda_i: float,
_alpha: float, _alpha: float,
_elastic: float, _elastic: float,
_t_e: float, _t_e: float,
t_i: float, t_i: float,
sigma_i: float, sigma_i,
_lambda_m: float, _lambda_m: float,
_t_m: float, _t_m: float,
_sigma_m: float, _sigma_m: float,
@@ -66,12 +67,12 @@ def fun_sigma_i1(
h_i1: float, h_i1: float,
l_i1: float, l_i1: float,
lambda_i1: float, lambda_i1: float,
): ) -> float:
beta_i = math.atan(h_i / l_i) beta_i = math.atan(h_i / l_i)
beta_i1 = math.atan(h_i1 / l_i1) beta_i1 = math.atan(h_i1 / l_i1)
_sigma_i1 = ( _sigma_i1 = (
( (
g_i / 2 / area g_i / 2 / area # g_i传入时已考虑导线分裂数
+ lambda_i * l_i / 2 / math.cos(beta_i) + lambda_i * l_i / 2 / math.cos(beta_i)
+ lambda_i1 * l_i1 / 2 / math.cos(beta_i1) + lambda_i1 * l_i1 / 2 / math.cos(beta_i1)
+ sigma_i * h_i / l_i + sigma_i * h_i / l_i
@@ -99,20 +100,21 @@ def cal_loop():
# n个档距,n-1个直线塔 # n个档距,n-1个直线塔
h_array = data.h_array h_array = data.h_array
l_array = data.l_array l_array = data.l_array
t_array = data.t_array t_i = data.t
lambda_array = [lambda_m, lambda_m, lambda_m] lambda_i_array = data.lambda_i_array
loop_count = 1 loop_count = 1
sigma_0 = sigma_m * 0.8 sigma_0 = sigma_m * 0.2
while True: while True:
sigma_0 = sigma_0 + 0.001
sigma_array = [sigma_0, 0, 0]
b_i = 0 b_i = 0
# 一次增加0.1N
sigma_0 = sigma_0 + 0.01 / data.area
sigma_array = [sigma_0 for _ in range(span_count)]
delta_l_i_array = [] delta_l_i_array = []
for i in range(span_count - 1): for i in range(span_count):
h_i = h_array[i] h_i = h_array[i]
l_i = l_array[i] l_i = l_array[i]
lambda_i = lambda_array[i] lambda_i = lambda_i_array[i]
t_i = t_array[i] t_i = t_i
sigma_i = sigma_array[i] sigma_i = sigma_array[i]
_delta_l_i = delta_li( _delta_l_i = delta_li(
h_i, h_i,
@@ -130,10 +132,12 @@ def cal_loop():
delta_l_i_array.append(_delta_l_i) delta_l_i_array.append(_delta_l_i)
b_i += _delta_l_i b_i += _delta_l_i
length_i = string_length length_i = string_length
g_i = string_g g_i = string_g / data.conductor_n
if i < span_count - 1:
lambda_i1 = lambda_i_array[i + 1]
h_i1 = h_array[i + 1] h_i1 = h_array[i + 1]
l_i1 = l_array[i + 1] l_i1 = l_array[i + 1]
lambda_i1 = lambda_array[i + 1] try:
sigma_i1 = fun_sigma_i1( sigma_i1 = fun_sigma_i1(
area, area,
sigma_i, sigma_i,
@@ -147,35 +151,38 @@ def cal_loop():
l_i1, l_i1,
lambda_i1, lambda_i1,
) )
except ValueError:
break
pass
sigma_array[i + 1] = sigma_i1 sigma_array[i + 1] = sigma_i1
# print("第{loop_count}轮求解。".format(loop_count=loop_count)) if math.fabs(b_i) < data.epsilon:
# print(b_i)
loop_count += 1
if math.fabs(b_i) < 1e-5:
print("迭代{loop_count}次找到解。".format(loop_count=loop_count)) print("迭代{loop_count}次找到解。".format(loop_count=loop_count))
print("悬垂串偏移累加bi为{b_i}".format(b_i=b_i)) print("悬垂串偏移累加bi为{b_i}".format(b_i=b_i))
for i in range(span_count): for i in range(span_count):
print("{i}档导线应力为{tension}".format(i=i, tension=sigma_array[i])) print("{i}档导线应力为{tension}".format(i=i, tension=sigma_array[i]))
for i in range(span_count - 1): for i in range(span_count - 1):
print("{i}串偏移值为{bias}".format(i=i, bias=delta_l_i_array[i])) print(
"{i}串偏移值为{bias}".format(i=i, bias=math.fsum(delta_l_i_array[0:i]))
)
verify( verify(
area, area,
h_array, h_array,
l_array, l_array,
string_length, string_length,
string_g, string_g / data.conductor_n,
sigma_array, sigma_array,
delta_l_i_array, delta_l_i_array,
lambda_array, lambda_i_array,
t_array, t_i,
alpha, alpha,
elastic, elastic,
t_e, t_e,
lambda_m, lambda_m,
t_m, t_m,
sigma_m sigma_m,
) )
break break
loop_count += 1
if loop_count >= loop_end: if loop_count >= loop_end:
print("!!!未找到解。") print("!!!未找到解。")
print(sigma_array) print(sigma_array)
@@ -193,29 +200,28 @@ def verify(
sigma_array: [float], sigma_array: [float],
delta_l_i_array: [float], delta_l_i_array: [float],
lambda_array: [float], lambda_array: [float],
t_array, t_i: float,
alpha, alpha: float,
elastic, elastic: float,
t_e, t_e: float,
lambda_m, lambda_m: float,
t_m, t_m: float,
sigma_m, sigma_m: float,
epsilon: float = 1e-4,
): ):
# 用新版大手册p329页(5-61)第一个公式校验 # 用新版大手册p329页(5-61)第一个公式校验
b_i = 0 b_i = 0
if math.fabs((math.fsum(delta_l_i_array))) > 1e-5:
print("偏移累加不等于0")
return
for i in range(len(delta_l_i_array)): for i in range(len(delta_l_i_array)):
sigma_i = sigma_array[i] sigma_i = sigma_array[i]
sigma_i1 = sigma_array[i + 1]
left_equ = sigma_array[i + 1]
_delta_l_i = delta_l_i_array[i] _delta_l_i = delta_l_i_array[i]
t_i = t_array[i] t_i = t_i
# 此处用新版大手册p329页(5-58)校验偏移值。 # 此处用新版大手册p329页(5-58)校验偏移值。
lambda_i = lambda_array[i] lambda_i = lambda_array[i]
lambda_i1 = lambda_array[i + 1]
h_i = h_array[i] h_i = h_array[i]
h_i1 = h_array[i + 1]
l_i = l_array[i] l_i = l_array[i]
l_i1 = l_array[i + 1]
cal_delta_l_i = delta_li( cal_delta_l_i = delta_li(
h_i, h_i,
l_i, l_i,
@@ -230,7 +236,13 @@ def verify(
sigma_m, sigma_m,
) )
if math.fabs(cal_delta_l_i - _delta_l_i) > 1e-4: if math.fabs(cal_delta_l_i - _delta_l_i) > 1e-4:
print('!!!偏移等式不满足。') print("!!!偏移等式不满足。")
if i < len(delta_l_i_array) - 1:
sigma_i1 = sigma_array[i + 1]
left_equ = sigma_array[i + 1]
lambda_i1 = lambda_array[i + 1]
h_i1 = h_array[i + 1]
l_i1 = l_array[i + 1]
beta_i = math.atan(h_i / l_i) beta_i = math.atan(h_i / l_i)
beta_i1 = math.atan(h_i1 / l_i1) beta_i1 = math.atan(h_i1 / l_i1)
w_i = ( w_i = (
@@ -239,17 +251,28 @@ def verify(
+ (lambda_i1 * l_i1 / 2 / math.cos(beta_i1) - sigma_i1 * h_i1 / l_i1) + (lambda_i1 * l_i1 / 2 / math.cos(beta_i1) - sigma_i1 * h_i1 / l_i1)
) )
b_i += delta_l_i_array[i] b_i += delta_l_i_array[i]
right_equ = sigma_i + b_i / math.sqrt( # 新版大手册p329 (5-61) 最上方公式
string_length ** 2 - b_i ** 2 right_equ = sigma_i + b_i / math.sqrt(string_length ** 2 - b_i ** 2) * (
) * (string_g / 2 / area + w_i) string_g / 2 / area + w_i # string_g已在传入时考虑了导线分裂数
if math.fabs(right_equ - left_equ) > 1e-4: )
# TODO 等式允许误差是否可调?
if math.fabs(right_equ - left_equ) > epsilon:
print(math.fabs(right_equ - left_equ)) print(math.fabs(right_equ - left_equ))
print("!!!应力等式不满足") print("!!!应力等式不满足")
return return
print("等式满足。") print("等式满足。")
print("sigma")
print(np.array(sigma_array) * area)
print("delta_li")
print(delta_l_i_array)
print("串偏移")
b_i = 0
b_i_list = []
for l_i in delta_l_i_array[:-1]:
b_i += l_i
b_i_list.append(b_i)
print(b_i_list)
if __name__ == "__main__":
cal_loop() cal_loop()
print("Finished.")