Compare commits

...

6 Commits

Author SHA1 Message Date
facat dbbba95996 1.重新整理代码
2.收敛条件强制让不等式满足要求
2020-12-14 16:34:23 +08:00
facat c8c245e717 利用numpy增强数值稳定性 2020-12-14 16:05:17 +08:00
facat 9d4b1e312a 修复indent 2020-12-14 14:51:44 +08:00
facat 54f789e22d 为了加快速度,将symbol公式lambdify成普通python函数 2020-12-14 14:50:55 +08:00
facat 2750267b94 1.增加与手动微分公式比较。
2.牛顿法对初值比较敏感。
2020-12-14 10:31:29 +08:00
facat b4db8b612e 在自动微分中引用等式检查。 2020-12-13 17:07:53 +08:00
4 changed files with 348 additions and 174 deletions

View File

@ -1,9 +1,12 @@
# 利用自动微分计算
from typing import List
import sympy
import data
import exp
import math
import main
import numpy as np
sympy.init_printing()
# h_i 悬点高差
@ -19,16 +22,6 @@ sympy.init_printing()
# _t_m 导线架线时时导线温度 单位°C
delta_Li__1 = sympy.symbols(
"delta_Li:{span_count}".format(span_count=data.span_count - 1)
)
delta_Li = (
*delta_Li__1,
sympy.symbols("delta_Li_i"),
)
# sigma_i = sympy.symbols("sigma_i:{span_count}".format(span_count=data.span_count))
loop_end = data.loop_end # 最大循环次数
# 架线时的状态
# 取外过无风
@ -37,37 +30,37 @@ string_g = data.string_g # 串重 单位N
t_m_data = data.t_m # 导线架设时的气温。单位°C
t_e_data = data.t_e # 架线时考虑初伸长的降温取正值。单位°C
alpha_data = data.alpha # 导线膨胀系数 1/°C
elastic = data.elastic # 弹性系数 N/mm2
area = data.area # 导线面积 mm2
elastic_data = data.elastic # 弹性系数 N/mm2
area_data = data.area # 导线面积 mm2
lambda_m_data = data.lambda_m # 导线比载 N/(m.mm)
sigma_m_data = data.sigma_m # 架线时初伸长未释放前的最低点水平应力。单位N/mm2
span_count = data.span_count # 几个档距
# n个档距,n-1个直线塔
h_array = data.h_array
hi_matrix = sympy.Matrix(h_array)
# sympy.pprint(hi_matrix)
l_array = data.l_array
l_matrix = sympy.Matrix(l_array)
t_data = data.t
conductor_n = data.conductor_n
# ti_matrix = sympy.Matrix(t_array)
lambda_i_array = data.lambda_i_array
# TODO: 暂时没考虑荷载变化
lambda_m_matrix = sympy.Matrix(lambda_i_array)
lambda_i_matrix = sympy.Matrix(lambda_i_array)
symbol_delta_l_i = exp.delta_li()
sigma_i = sympy.symbols("sigma_i")
d_delta_l_i_sigma_i = sympy.diff(symbol_delta_l_i, sigma_i)
fx_d_delta_l_i_sigma_i = exp.get_lambdify_d_delta_l_i_sigma_i(d_delta_l_i_sigma_i)
delta_Li__1 = sympy.symbols(
"delta_Li:{span_count}".format(span_count=data.span_count - 1)
)
delta_Li = (
*delta_Li__1,
sympy.symbols("delta_Li_i"),
)
symbol_sigma_i1 = exp.fun_sigma_i1(delta_Li)
d_sigma_i1_sigma_i = sympy.diff(symbol_sigma_i1, sigma_i)
# sigma_i1 = sympy.symbols("sigma_i1")
# d_sigma_i1_sigma_i1 = sympy.diff(symbol_sigma_i1, sigma_i)
delta_Li_i = sympy.symbols("delta_Li_i")
d_sigma_i1_d_l_i = sympy.diff(symbol_sigma_i1, delta_Li_i)
fx_d_sigma_i1_d_l_i = exp.get_lambdify_d_sigma_i1_d_l_i(d_sigma_i1_d_l_i, delta_Li)
# 一共2n个变量n个delta_Lin个sigma_i
# 分 [
# A B
@ -79,53 +72,40 @@ d_sigma_i1_d_l_i = sympy.diff(symbol_sigma_i1, delta_Li_i)
# B为dΔli/dσi
def evaluate_d_delta_l_i_sigma_i(val_delta_l_li, val_sigma_i):
(
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
_sigma_i,
beta_i,
) = sympy.symbols(
"""
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
sigma_i,
beta_i
"""
)
val_list = []
for i in range(span_count):
val = d_delta_l_i_sigma_i.subs(
[
(delta_l_i, val_delta_l_li[i]),
(l_i, l_array[i]),
(lambda_i, lambda_i_array[i]),
(alpha, alpha_data),
(E, elastic),
(t_e, t_e_data),
(t_i, t_data),
(lambda_m, lambda_m_data),
(t_m, t_m_data),
(sigma_m, sigma_m_data),
(_sigma_i, val_sigma_i[i]),
(beta_i, math.atan(h_array[i] / l_array[i])),
]
val = sympy.Float(
fx_d_delta_l_i_sigma_i(
val_delta_l_li[i],
l_array[i],
lambda_i_array[i],
alpha_data,
elastic_data,
t_e_data,
t_data,
lambda_m_data,
t_m_data,
sigma_m_data,
val_sigma_i[i],
math.atan(h_array[i] / l_array[i]),
)
)
manual_val = exp.manual_diff_delta_li_sigma_i(
h_array[i],
l_array[i],
lambda_m_data,
lambda_i_array[i],
val_sigma_i[i],
sigma_m_data,
alpha_data,
t_data,
t_e_data,
t_m_data,
elastic_data,
)
if math.fabs(val - manual_val) > 1e-5:
raise Exception("d_delta_l_i_sigma_i 自动和手动微分不匹配")
val_list.append(val)
return val_list
@ -133,37 +113,7 @@ def evaluate_d_delta_l_i_sigma_i(val_delta_l_li, val_sigma_i):
# C为dσi1dΔli
# C只有n-1行
def evaluate_d_sigma_i1_d_delta_l_i(val_delta_l_li, val_sigma_i):
(
G_i,
A,
lambda_i,
lambda_i1,
_sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
_sigma_i1,
beta_i,
beta_i1,
) = sympy.symbols(
"""
G_i,
A,
lambda_i,
lambda_i1,
sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
sigma_i1,
beta_i,
beta_i1,
"""
)
row = []
for i in range(span_count - 1):
col = []
@ -171,36 +121,46 @@ def evaluate_d_sigma_i1_d_delta_l_i(val_delta_l_li, val_sigma_i):
if i < j:
col.append(0)
else:
_val = d_sigma_i1_d_l_i.subs(
[
(G_i, string_g / conductor_n),
(A, area),
(lambda_i, lambda_i_array[i]),
(lambda_i1, lambda_i_array[i + 1]),
(_sigma_i, val_sigma_i[i]),
(h_i, h_array[i]),
(h_i1, h_array[i + 1]),
(l_i, l_array[i]),
(l_i1, l_array[i + 1]),
(stringlen_i, string_length),
(_sigma_i1, val_sigma_i[i + 1]),
(beta_i, math.atan(h_array[i] / l_array[i])),
(beta_i1, math.atan(h_array[i + 1] / l_array[i + 1])),
]
)
_val_delta_l_li = list(val_delta_l_li)
_val_delta_l_li[-1] = _val_delta_l_li[j] # 把需要求导的Δlj放最后一个位置
_val_delta_l_li[j] = 0
# σi1的第i+1行至倒数第2行全部清0
for k in range(i + 1, len(_val_delta_l_li) - 1):
_val_delta_l_li[k] = 0
# if index == i:
# _val = _val.subs(li, val_delta_l_li[index])
# if index > i:
# _val = _val.subs(li, 0)
for index, li in enumerate(delta_Li):
_val = _val.subs(li, _val_delta_l_li[index])
pass
_val = sympy.Float(
fx_d_sigma_i1_d_l_i(
string_g / conductor_n,
area_data,
lambda_i_array[i],
lambda_i_array[i + 1],
val_sigma_i[i],
h_array[i],
h_array[i + 1],
l_array[i],
l_array[i + 1],
string_length,
val_sigma_i[i + 1],
math.atan(h_array[i] / l_array[i]),
math.atan(h_array[i + 1] / l_array[i + 1]),
*_val_delta_l_li
)
)
manual_val = exp.manual_diff_sigma_i1_d_l_i(
h_array[i],
l_array[i],
h_array[i + 1],
l_array[i + 1],
string_g / conductor_n,
area_data,
lambda_i_array[i],
lambda_i_array[i + 1],
val_sigma_i[i],
string_length,
math.fsum(val_delta_l_li[0 : i + 1]),
)
if math.fabs(manual_val - _val) > 1e-5:
raise Exception("d_sigma_i1_delta_L_i 自动和手动微分不匹配")
col.append(_val)
row.append(col)
return sympy.Matrix(row)
@ -237,12 +197,8 @@ def evaluate_d_sigma_i1_d_delta_sigma_i(val_delta_li):
def solve():
# 初始化
val_delta_li = [0.1 for i in range(span_count)]
# val_delta_li = [0.15864687475316822, -0.1935189734784845, 0.03478489898855073]
val_delta_li = [0.1 for _ in range(span_count)]
val_sigma_i = [sigma_m_data for _ in range(span_count)]
# val_sigma_i = [175.38451579479482, 176.01015153076614, 175.88355419459572]
loop = 0
while True:
loop += 1
@ -268,7 +224,6 @@ def solve():
A = sympy.Matrix([[M_A, M_B], [M_C, M_D], [M_E]])
fx_delta_Li = []
fx_sigma_i1 = []
b_i = 0
for i in range(span_count):
fx_delta_Li.append(
val_delta_li[i]
@ -277,7 +232,7 @@ def solve():
l_array[i],
lambda_i_array[i],
alpha_data,
elastic,
elastic_data,
t_e_data,
t_data,
val_sigma_i[i],
@ -290,7 +245,7 @@ def solve():
fx_sigma_i1.append(
val_sigma_i[i + 1]
- main.fun_sigma_i1(
area,
area_data,
val_sigma_i[i],
math.fsum(val_delta_li[0 : i + 1]),
string_length,
@ -303,35 +258,19 @@ def solve():
lambda_i_array[i + 1],
)
)
# lambda_i1 = lambda_i_array[i + 1]
# h_i1 = h_array[i + 1]
# l_i1 = l_array[i + 1]
# h_i = h_array[i]
# l_i = l_array[i]
# beta_i = math.atan(h_i / l_i)
# beta_i1 = math.atan(h_i1 / l_i1)
# w_i = (
# lambda_i_array[i] * l_array[i] / 2 / math.cos(beta_i)
# + val_sigma_i[i] * h_i / l_i
# + (lambda_i1 * l_i1 / 2 / math.cos(beta_i1) - val_sigma_i[i+1] * h_i1 / l_i1)
# )
# b_i += val_delta_li[i]
# # 新版大手册p329 (5-61) 最上方公式
# right_equ = val_sigma_i[i] + b_i / math.sqrt(string_length ** 2 - b_i ** 2) * (
# string_g/conductor_n / 2 / area + w_i # string_g已在传入时考虑了导线分裂数
# )
fx_sum_Li = [math.fsum(val_delta_li)]
b_list = []
b_list.extend(fx_delta_Li)
b_list.extend(fx_sigma_i1)
b_list.extend(fx_sum_Li)
b = sympy.Matrix(b_list)
# sympy.pprint(b)
x = sympy.linsolve((-A, b))
x_list = list(x)[0]
abs_min = [math.fabs(_x) for _x in x_list]
AA = np.array(A.tolist(), dtype=np.float64)
b = np.array(b_list, dtype=np.float64)
x = np.linalg.solve(-AA, b)
x_list = x
# 强制要求等式满足
abs_min: List[float] = [
math.fabs(_x) for _x in [*x_list, *fx_delta_Li, *fx_sigma_i1]
]
abs_min.sort()
if abs_min[-1] < 1e-5:
break
@ -343,10 +282,33 @@ def solve():
if loop >= loop_end:
print("不收敛")
else:
print(loop)
print(val_delta_li)
print(val_sigma_i)
print("经过{loop}次迭代收敛,最大偏差{bias}".format(loop=loop, bias=abs_min[-1]))
# print(val_delta_li)
# print(val_sigma_i)
verify(val_delta_li, val_sigma_i)
def verify(val_delta_li, val_sigma_i):
main.verify(
area_data,
h_array,
l_array,
string_length,
string_g / conductor_n,
val_sigma_i,
val_delta_li,
lambda_i_array,
t_data,
alpha_data,
elastic_data,
t_e_data,
lambda_m_data,
t_m_data,
sigma_m_data,
1e-5,
)
solve()
print("Finished.")

58
data.py
View File

@ -1,4 +1,4 @@
#loop_end = 10000000 # 最大循环次数
# loop_end = 10000000 # 最大循环次数
loop_end = 1000000 # 最大循环次数
# 架线时的状态
# 取外过无风
@ -10,13 +10,61 @@ alpha = 0.0000155 # 导线膨胀系数 1/°C
elastic = 95900 # 弹性系数 N/mm2
area = 154.48 # 导线面积 mm2
lambda_m = 14.8129 / area # 导线比载 N/(m.mm)
lambda_i_array = [lambda_m*0.9,lambda_m*1.3,lambda_m,lambda_m,lambda_m]
lambda_i_array = [
lambda_m * 0.9,
lambda_m * 1.2,
lambda_m,
lambda_m,
lambda_m,
lambda_m * 0.9,
lambda_m * 1.5,
lambda_m,
lambda_m,
lambda_m,
lambda_m,
lambda_m,
lambda_m,
lambda_m * 0.9,
lambda_m * 1.3,
]
# 取400m代表档距下
sigma_m = 28517 / area # 架线时初伸长未释放前的最低点水平应力。单位N/mm2
span_count = 3 # 几个档距
span_count = 14 # 几个档距
# n个档距,n-1个直线塔
h_array = [0, 0, 0, 0, 0]
l_array = [400, 300, 300, 500, 300]
h_array = [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
]
l_array = [
400,
300,
300,
500,
300,
400,
300,
300,
500,
300,
300,
500,
300,
400,
300,
]
t = 15
epsilon = 1e-4 # 收敛判据
conductor_n = 6 # 导线分裂数

159
exp.py
View File

@ -27,7 +27,7 @@ def delta_li():
t_m,
sigma_m,
sigma_i,
beta_i
beta_i,
) = sympy.symbols(
"""
delta_l_i,
@ -43,7 +43,6 @@ def delta_li():
sigma_i,
beta_i,"""
)
# beta_i = sympy.atan(h_i / l_i) # 高差角
_delta_li = delta_l_i - (
l_i
/ ((sympy.cos(beta_i) ** 2) * (1 + (lambda_i * l_i / sigma_i) ** 2 / 8))
@ -55,7 +54,6 @@ def delta_li():
+ alpha * (t_i + t_e - t_m)
)
)
# d_delta_li_sigma_i = sympy.diff(_delta_li, sigma_i)
return _delta_li
@ -106,6 +104,7 @@ def fun_sigma_i1(delta_Li):
for f in delta_Li:
_t += f
return _t
_sigma_i1 = sigma_i1 - (
(
G_i / 2 / A # G_i传入时已考虑导线分裂数
@ -116,3 +115,157 @@ def fun_sigma_i1(delta_Li):
+ sigma_i / b_i() * sympy.sqrt(stringlen_i ** 2 - b_i() ** 2)
) / (sympy.sqrt(stringlen_i ** 2 - b_i() ** 2) / b_i() + h_i1 / l_i1)
return _sigma_i1
def manual_diff_delta_li_sigma_i(
h_i, l_i, lambda_m, lambda_i, sigma_i, sigma_m, alpha, t_i, t_e, t_m, E
):
beta_i = math.atan(h_i / l_i)
A = (
(l_i * math.cos(beta_i)) ** 2
/ 24
* ((lambda_m / sigma_m) ** 2 - (lambda_i / sigma_i) ** 2)
+ (sigma_i - sigma_m) / E / math.cos(beta_i)
+ alpha * (t_i + t_e - t_m)
)
B = 1 + (lambda_i * l_i / sigma_i) ** 2 / 8
dA_dsigma_i = ((l_i * math.cos(beta_i)) ** 2) / 24 * 2 * lambda_i ** 2 * (
sigma_i ** (-3)
) + 1 / E / math.cos(beta_i)
dB_dsigma_i = -2 * (lambda_i * l_i) ** 2 / 8 * (sigma_i ** (-3))
_t = -l_i / (math.cos(beta_i) ** 2) * (dA_dsigma_i * B - A * dB_dsigma_i) / (B ** 2)
return _t
def manual_diff_sigma_i1_d_l_i(
h_i, l_i, h_i1, l_i1, Gi, A, lambda_i, lambda_i1, sigma_i, stringlen, b_i
):
beta_i = math.atan(h_i / l_i)
beta_i1 = math.atan(h_i1 / l_i1)
A = (
Gi / 2 / A
+ lambda_i * l_i / 2 / math.cos(beta_i)
+ lambda_i1 * l_i1 / 2 / math.cos(beta_i1)
+ sigma_i * h_i / l_i
+ sigma_i / b_i * ((stringlen ** 2 - b_i ** 2) ** 0.5)
)
B = ((stringlen ** 2 - b_i ** 2) ** 0.5)/b_i + h_i1 / l_i1
dA_d_delta_L1 = (
sigma_i
* (
-((stringlen ** 2 - b_i ** 2) ** -0.5) * (b_i ** 2)
- (stringlen ** 2 - b_i ** 2) ** 0.5
)
/ (b_i ** 2)
)
dB_d_delta_L1 = (
1
/ (b_i ** 2)
* (
-((stringlen ** 2 - b_i ** 2) ** -0.5) * (b_i ** 2)
- (stringlen ** 2 - b_i ** 2) ** 0.5
)
)
_t = -(dA_d_delta_L1 * B - A * dB_d_delta_L1) / (B ** 2)
return _t
def get_lambdify_d_delta_l_i_sigma_i(_d_delta_l_i_sigma_i):
(
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
_sigma_i,
beta_i,
) = sympy.symbols(
"""
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
sigma_i,
beta_i
"""
)
return sympy.lambdify(
(
delta_l_i,
l_i,
lambda_i,
alpha,
E,
t_e,
t_i,
lambda_m,
t_m,
sigma_m,
_sigma_i,
beta_i,
),
_d_delta_l_i_sigma_i,
)
def get_lambdify_d_sigma_i1_d_l_i(_d_sigma_i1_d_l_i,delta_Li):
(
G_i,
A,
lambda_i,
lambda_i1,
_sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
_sigma_i1,
beta_i,
beta_i1,
) = sympy.symbols(
"""
G_i,
A,
lambda_i,
lambda_i1,
sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
sigma_i1,
beta_i,
beta_i1,
"""
)
return sympy.lambdify(
(
G_i,
A,
lambda_i,
lambda_i1,
_sigma_i,
h_i,
h_i1,
l_i,
l_i1,
stringlen_i,
_sigma_i1,
beta_i,
beta_i1,
*delta_Li,
),
_d_sigma_i1_d_l_i,
)

29
main.py
View File

@ -106,7 +106,7 @@ def cal_loop():
while True:
b_i = 0
# 一次增加0.1N
sigma_0 = sigma_0 + 0.1 / data.area
sigma_0 = sigma_0 + 0.01 / data.area
sigma_array = [sigma_0 for j in range(span_count)]
delta_l_i_array = []
for i in range(span_count):
@ -132,10 +132,10 @@ def cal_loop():
b_i += _delta_l_i
length_i = string_length
g_i = string_g / data.conductor_n
h_i1 = h_array[i + 1]
l_i1 = l_array[i + 1]
if i<span_count-1:
if i < span_count - 1:
lambda_i1 = lambda_i_array[i + 1]
h_i1 = h_array[i + 1]
l_i1 = l_array[i + 1]
try:
sigma_i1 = fun_sigma_i1(
area,
@ -160,7 +160,9 @@ def cal_loop():
for i in range(span_count):
print("{i}档导线应力为{tension}".format(i=i, tension=sigma_array[i]))
for i in range(span_count - 1):
print("{i}串偏移值为{bias}".format(i=i, bias=math.fsum(delta_l_i_array[0:i])))
print(
"{i}串偏移值为{bias}".format(i=i, bias=math.fsum(delta_l_i_array[0:i]))
)
verify(
area,
h_array,
@ -204,9 +206,13 @@ def verify(
lambda_m,
t_m,
sigma_m,
epsilon=1e-4,
):
# 用新版大手册p329页(5-61)第一个公式校验
b_i = 0
if math.fabs((math.fsum(delta_l_i_array)))>1e-5:
print('偏移累加不等于0')
return
for i in range(len(delta_l_i_array)):
sigma_i = sigma_array[i]
_delta_l_i = delta_l_i_array[i]
@ -230,7 +236,7 @@ def verify(
)
if math.fabs(cal_delta_l_i - _delta_l_i) > 1e-4:
print("!!!偏移等式不满足。")
if i<len(delta_l_i_array)-1:
if i < len(delta_l_i_array) - 1:
sigma_i1 = sigma_array[i + 1]
left_equ = sigma_array[i + 1]
lambda_i1 = lambda_array[i + 1]
@ -244,18 +250,23 @@ def verify(
+ (lambda_i1 * l_i1 / 2 / math.cos(beta_i1) - sigma_i1 * h_i1 / l_i1)
)
b_i += delta_l_i_array[i]
#新版大手册p329 (5-61) 最上方公式
# 新版大手册p329 (5-61) 最上方公式
right_equ = sigma_i + b_i / math.sqrt(string_length ** 2 - b_i ** 2) * (
string_g / 2 / area + w_i # string_g已在传入时考虑了导线分裂数
)
# TODO 等式允许误差是否可调?
if math.fabs(right_equ - left_equ) > 1e-4:
if math.fabs(right_equ - left_equ) > epsilon:
print(math.fabs(right_equ - left_equ))
print("!!!应力等式不满足")
return
print("等式满足。")
# print('sigma')
# print(sigma_array)
print('delta_li')
print(delta_l_i_array)
if __name__=='__main__':
if __name__ == "__main__":
cal_loop()
import sympy