transsimision_line_section/PWFile.py

562 lines
22 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os.path
from collections import OrderedDict
import re
import pandas as pd
from attrs import define
from tkinter.messagebox import NO
import xlwings as xw
from Apyautocad import Apyautocad, APoint
import os
import numpy as np
from time import sleep
from attrs import define
from typing import List
@define
class SEntry:
tower_name: str = ""
tower_height: float = 0
tower_type: str = ""
mileage_in_s: int = 0
back_k: float = 0
forth_k: float = 0
altitude_off: float = 0 # 中心桩高差
foundation_low: float = 0 # 基降
fitting: str = "" # 金具
is_tension_tower: bool = False
back_representive_span: float = 0 # 代表档距
forth_representive_span: float = 0 # 代表档距
class SFile:
def __init__(self) -> None:
self.tower_dic = None
def open(self, s_file_path):
self.tower_dic = OrderedDict()
tower_dic = self.tower_dic
with open(s_file_path, encoding="gbk") as s_file_obj:
new_k = 0
new_reprtv_span = 0
last_k = -1
last_reprtv_span = -1
last_tower_name = ""
for line in s_file_obj:
norm_line = line.strip()
if norm_line == "":
continue
if "首端转角号" in norm_line:
new_k = float(norm_line.split(":")[-1].replace("E", "e")) # 模板系数
new_reprtv_span = float(
re.findall("代表档距 : (\d+) 模板系数", norm_line)[0]
) # 代表档距
continue
if "塔号" in norm_line:
# next_is_tension_tower=True
if last_tower_name != "":
tower_dic[last_tower_name].is_tension_tower = True
continue
norm_entry = re.sub("\s+", ",", norm_line)
sep_entry = norm_entry.split(",")
tower_name = sep_entry[0]
if tower_name in tower_dic:
tower_dic[tower_name].forth_k = new_k # 更新耐张塔前侧k值。
continue
s_entry = SEntry()
s_entry.tower_name = tower_name
last_tower_name = tower_name
s_entry.tower_type = sep_entry[6]
s_entry.tower_height = float(sep_entry[7])
s_entry.mileage_in_s = float(sep_entry[1])
s_entry.back_k = last_k
s_entry.back_representive_span = last_reprtv_span
s_entry.forth_k = new_k
s_entry.forth_representive_span = new_reprtv_span
s_entry.altitude_off = float(sep_entry[3])
s_entry.foundation_low = float(sep_entry[4])
s_entry.fitting = sep_entry[8]
last_k = s_entry.forth_k
last_reprtv_span = s_entry.forth_representive_span
tower_dic[tower_name] = s_entry
tower_dic[list(tower_dic.keys())[-1]].forth_k = -1
tower_dic[list(tower_dic.keys())[0]].is_tension_tower = True
tower_dic[list(tower_dic.keys())[-1]].is_tension_tower = True
@define
class Fitting:
fitting_length_dic = {}
def __init__(self, fitting_file_path):
content = []
with open(fitting_file_path) as fitting_file:
for line in fitting_file:
norm_line = line.strip()
if norm_line == "":
continue
norm_entry = re.sub("\s+", ",", norm_line)
content.append(norm_entry.split(","))
ite = iter(content[7:])
for fit in ite: # 跳过前面7行
fit_name = fit[0]
fit_parameter = next(ite)
self.fitting_length_dic[fit_name] = float(fit_parameter[2]) / 1000
@define
class ColorEnume:
wire_color_rgb = [122, 219, 245]
tree_color_rgb = [240, 226, 81]
ground_color_rgb = [82, 79, 254]
# 读取Z文件找到Z断面第一个点的坐标
def plane_z_origin(z_file_path):
with open(z_file_path) as zfile:
content = zfile.read()
norm_content = re.sub("\s+", ",", content)
sep = norm_content.split(",")
return np.array([float(sep[0]), float(sep[1])])
def deduce_zfile_from_cad_path(cad_file_path):
dwg_file_name = os.path.split(cad_file_path)
dwg_prefix = dwg_file_name[1].split(".")[0]
return os.path.join(dwg_file_name[0], f"Z{dwg_prefix}")
def deduce_fit_db_from_cad_path(cad_file_path):
dwg_file_name = os.path.split(cad_file_path)
dwg_prefix = dwg_file_name[1].split(".")[0]
return os.path.join(dwg_file_name[0], "Fit.db")
def curve_fun(x, span, k, gaocha):
return x * gaocha / span - x * (span - x) * k
def np2d_to_array(np2d): # 把2维numpy数组转换成cad可以用的数组
t = np.hstack((np2d, np.zeros((np2d.shape[0], 1)))).reshape(1, np2d.shape[0] * 3)
return t[0]
class StringImpactExcel:
def __init__(self) -> None:
# self._wb=None
pass
def read(self, wb, gaocha, span, tension):
pos代表档距 = "F13"
pos档距 = "L13"
pos高差 = "R13"
pos张力 = "AB18"
pos总串长 = "C8"
sheet = wb.sheets["模板"]
sheet.range(pos高差).value = gaocha
sheet.range(pos档距).value = span
sheet.range(pos张力).value = tension
string_length = sheet.range(pos总串长).value
# print(sheet.range("V25:V46").value)
x = np.linspace(string_length, span, int(span / 5), endpoint=True)
x[0] = sheet.range("E23").value
x[1] = sheet.range("E24").value
sheet.range(f"E25:E{25+len(x)-3}").value = x[2:].reshape(len(x[2:]), 1)
y = (
np.array(sheet.range(f"V23:V{23+len(x)-1}").value) / 2
) # 表格是乘以了2的为了和x保持一致没有乘比例。
return (x, y)
def set_true_color(object, r, g, b):
true_color = object.TrueColor
true_color.SetRGB(r, g, b)
object.TrueColor = true_color
@define
class StringImpactPlate:
_dwg_file_path: str
_s_file_path: str
_draw_start_tower_name: str
_continouse_tension_excel: str
_string_impact_curve_excel: str
_cad: None
def _find_target_tower_index(self, start_tower_name: str, tower_dict):
index = []
tower_key_list = list(tower_dict.keys())
index.append(tower_key_list.index(start_tower_name))
can_start_find = False
for tower_key in tower_key_list:
# index.append(start_tower_name.index(foo))
tower_info = tower_dict[tower_key]
if tower_info.tower_name == start_tower_name:
can_start_find = True
continue
if can_start_find and tower_info.is_tension_tower == True:
found_tower_name = tower_info.tower_name
index.append(tower_key_list.index(found_tower_name))
break
return index
def _plot(self, cad, plot_x, plot_y):
plot_vector = np2d_to_array(np.hstack((plot_x, plot_y)))
added_curve = cad.model.AddPolyLine(plot_vector)
set_true_color(added_curve, *ColorEnume.wire_color_rgb)
plot_ground_y = plot_y - 18 * 2
plot_ground_vector = np2d_to_array(np.hstack((plot_x, plot_ground_y)))
added_ground_curve = cad.model.AddPolyLine(plot_ground_vector)
set_true_color(added_ground_curve, *ColorEnume.ground_color_rgb)
plot_tree_y = plot_y - 13.5 * 2
plot_tree_vector = np2d_to_array(np.hstack((plot_x, plot_tree_y)))
added_tree_curve = cad.model.AddPolyLine(plot_tree_vector)
set_true_color(added_tree_curve, *ColorEnume.tree_color_rgb)
def _draw_action(self, excel_app, cad):
# 计算代表档距
s_file = SFile()
s_file.open(self._s_file_path)
tower_dict = s_file.tower_dic
tower_key_list = list(tower_dict.keys())
draw_tower_index = self._find_target_tower_index(
self._draw_start_tower_name, tower_dict
)
fitting_file_path = deduce_fit_db_from_cad_path(self._dwg_file_path)
fitting = Fitting(fitting_file_path)
z_file_path = deduce_zfile_from_cad_path(self._dwg_file_path)
plate_origin = plane_z_origin(z_file_path)
continouse_wb = excel_app.books.open(self._continouse_tension_excel)
continouse_sheet = continouse_wb.sheets["模板"]
wb_string_impact = excel_app.books.open(self._string_impact_curve_excel)
stringImpactExcel = StringImpactExcel()
sleep(1)
draw_first_tower_key = tower_key_list[draw_tower_index[0]]
first_tower_info = tower_dict[draw_first_tower_key]
forth_reprtv_span = first_tower_info.forth_representive_span
continouse_sheet.range("B69").value = forth_reprtv_span
high_temperature_tension = continouse_sheet.range("L69").value
forth_tower_info = tower_dict[tower_key_list[draw_tower_index[0] + 1]]
gaocha_of_first_tower = (
(
forth_tower_info.tower_height
- forth_tower_info.foundation_low
- fitting.fitting_length_dic[forth_tower_info.fitting]
)
- (first_tower_info.tower_height - first_tower_info.foundation_low)
+ forth_tower_info.altitude_off
)
span_of_first_tower = (
forth_tower_info.mileage_in_s - first_tower_info.mileage_in_s
)
(x, y) = stringImpactExcel.read(
wb_string_impact,
gaocha_of_first_tower,
span_of_first_tower,
high_temperature_tension,
)
# TODO: 没有考虑断面中间有耐张塔的情况
plot_x = (plate_origin[0] + x / 5).reshape(len(x), 1)
plot_y = (
plate_origin[1]
+ (first_tower_info.tower_height - first_tower_info.foundation_low + y) * 2
).reshape(len(x), 1)
self._plot(cad, plot_x, plot_y)
# 画右侧耐张塔的弧垂
draw_last_tower_key = tower_key_list[draw_tower_index[-1]]
last_tower_info = tower_dict[draw_last_tower_key]
back_reprtv_span = last_tower_info.back_representive_span
back_tower_info = tower_dict[tower_key_list[draw_tower_index[-1] - 1]]
gaocha_of_last_tower = (
(
back_tower_info.tower_height
- back_tower_info.foundation_low
- fitting.fitting_length_dic[back_tower_info.fitting]
)
- (last_tower_info.tower_height - last_tower_info.foundation_low)
- last_tower_info.altitude_off
)
span_of_last_tower = last_tower_info.mileage_in_s - back_tower_info.mileage_in_s
(x, y) = stringImpactExcel.read(
wb_string_impact,
gaocha_of_last_tower,
span_of_last_tower,
high_temperature_tension,
)
plot_last_tower_x = (
plate_origin[0]
+ (
tower_dict[tower_key_list[draw_tower_index[-1]]].mileage_in_s
- tower_dict[tower_key_list[draw_tower_index[0]]].mileage_in_s
)
/ 5
- x / 5 # 从右往左画
).reshape(len(x), 1)
accumulate_altitude_off = np.sum(
[
tower_dict[tower_key_list[bar]].altitude_off
for bar in range(draw_tower_index[0] + 1, draw_tower_index[-1] + 1)
]
)
plot_last_tower_y = (
plate_origin[1]
+ accumulate_altitude_off * 2
+ (last_tower_info.tower_height - last_tower_info.foundation_low + y) * 2
).reshape(len(x), 1)
plot_last_tower_vector = np2d_to_array(
np.hstack((plot_last_tower_x, plot_last_tower_y))
)
self._plot(cad, plot_last_tower_x, plot_last_tower_y)
def draw(self):
if self._cad:
with xw.App(visible=False) as excel_app:
self._draw_action(excel_app, self._cad)
else:
with xw.App(visible=False) as excel_app, Apyautocad(
create_if_not_exists=True, visible=True, auto_close=True
) as cad:
cad.app.Documents.Open(self._dwg_file_path)
self._draw_action(excel_app, cad)
def saveAs(self, save_to):
self._cad.SaveAs(save_to)
@define
class ContinuousPlate:
_dwg_file_path: str
_s_file_path: str
_from_tower_name: str
_end_tower_name: str
cad: object = None
def draw(self):
s_file = SFile()
s_file_path = self._s_file_path
s_file.open(s_file_path)
dwg_file_path = self._dwg_file_path
with Apyautocad(
create_if_not_exists=True, visible=False, auto_close=False
) as cad:
self.cad = cad
# self._end_tower_name='sdfsd'
doc = cad.app.Documents.Open(dwg_file_path)
sleep(1)
tower_dict = s_file.tower_dic
z_file_path = deduce_zfile_from_cad_path(dwg_file_path)
z_point = plane_z_origin(z_file_path)
fitting_file_path = deduce_fit_db_from_cad_path(dwg_file_path)
fitting = Fitting(fitting_file_path)
fitting_length_dict = fitting.fitting_length_dic
first_tower_point = z_point
last_tower_info = None # 上一个塔位信息
accu_mileage = 0 # 累计档距
accu_altitude_off = 0 # 累计高差
is_first_tower = True
can_start_draw = -1
start_tower_name = self._from_tower_name
tower_key_list = list(tower_dict.keys())
draw_count_limit = (
tower_key_list.index(self._end_tower_name)
- tower_key_list.index(self._from_tower_name)
+ 1
)
draw_count = 0
for tower in tower_dict:
tower_info = tower_dict[tower]
if tower_info.tower_name == start_tower_name:
can_start_draw = 0
elif can_start_draw != 0:
continue
if not last_tower_info:
last_tower_info = tower_info
if draw_count > draw_count_limit - 1:
break
foundation_low = tower_info.foundation_low
accu_mileage = (
accu_mileage
+ tower_info.mileage_in_s
- last_tower_info.mileage_in_s
)
if is_first_tower:
accu_altitude_off = 0
else:
accu_altitude_off = (
accu_altitude_off + tower_info.altitude_off
) # 中心桩高程
tower_start = APoint(
*(
(
first_tower_point
+ np.array(
[
accu_mileage / 5,
(accu_altitude_off - foundation_low) * 2,
]
)
).tolist()
)
)
tower_height = tower_info.tower_height
np_tower_end = first_tower_point + np.array(
[
accu_mileage / 5,
(accu_altitude_off + tower_height - foundation_low) * 2,
]
)
tower_end = APoint(*np_tower_end.tolist())
# 画杆高
cad.model.AddLine(tower_start, tower_end)
# 画塔名和呼高
cad.model.AddText(
f"{tower_info.tower_name}",
APoint(*(np_tower_end + np.array([-5, 13])).tolist()),
5,
)
cad.model.AddText(
f"{tower_info.tower_type}-{tower_info.tower_height}",
APoint(*(np_tower_end + np.array([-5, 5])).tolist()),
5,
)
draw_count += 1
# 画弧垂
if not is_first_tower: # 从第二基塔开始画
draw_k = tower_info.back_k
span = tower_info.mileage_in_s - last_tower_info.mileage_in_s
last_tower_fiting = last_tower_info.fitting
last_tower_fitting_length = fitting_length_dict[last_tower_fiting]
if last_tower_info.is_tension_tower:
last_tower_fitting_length = 0
tower_fitting = tower_info.fitting
tower_fitting_length = fitting_length_dict[tower_fitting]
if tower_info.is_tension_tower:
tower_fitting_length = 0
last_tower_height = last_tower_info.tower_height
last_foundation_low = last_tower_info.foundation_low
# 挂点高差
fiting_altitude_off = (
tower_info.altitude_off
+ (tower_height - foundation_low - tower_fitting_length)
- (
last_tower_height
- last_foundation_low
- last_tower_fitting_length
)
) # 前侧高为正
# 画导线弧垂
x = np.linspace(0, span, int(span), endpoint=True)
curve = curve_fun(x, span, draw_k, fiting_altitude_off)
draw_curve_x = (first_tower_point[0]) + (
x + accu_mileage - span
) / 5
draw_curve_y = (
first_tower_point[1]
+ (
+curve
+ accu_altitude_off
- tower_info.altitude_off
- last_tower_info.foundation_low
+ last_tower_info.tower_height
- last_tower_fitting_length
)
* 2
)
draw_curve_x = draw_curve_x.reshape(len(draw_curve_x), 1)
draw_curve_y = draw_curve_y.reshape(len(draw_curve_y), 1)
draw_ground_curve_y = draw_curve_y - 18 * 2 # 切地线
draw_tree_curve_y = draw_curve_y - 13.5 * 2 # 切树线
draw_point = np.hstack(
(draw_curve_x, draw_curve_y, np.zeros((len(draw_curve_x), 1)))
)
draw_ground_curve_point = np.hstack(
(
draw_curve_x,
draw_ground_curve_y,
np.zeros((len(draw_curve_x), 1)),
)
)
draw_tree_curve_point = np.hstack(
(
draw_curve_x,
draw_tree_curve_y,
np.zeros((len(draw_curve_x), 1)),
)
)
added_curve = cad.model.AddPolyLine(
draw_point.reshape(1, draw_curve_x.shape[0] * 3)[0]
)
set_true_color(added_curve, *ColorEnume.wire_color_rgb)
added_ground_curve = cad.model.AddPolyLine(
draw_ground_curve_point.reshape(
1, draw_ground_curve_y.shape[0] * 3
)[0]
)
set_true_color(added_ground_curve, *ColorEnume.ground_color_rgb)
added_tree_curve = cad.model.AddPolyLine(
draw_tree_curve_point.reshape(
1, draw_tree_curve_y.shape[0] * 3
)[0]
)
set_true_color(added_tree_curve, *ColorEnume.tree_color_rgb)
is_first_tower = False
last_tower_info = tower_info
def saveAs(self, save_to):
cad = self.cad
doc.SaveAs(save_to)
@define
class ControlFile:
_z_file_path: str = ""
_dwg_file_path: str = ""
_from_tower_name: str = ""
_end_tower_name: str = ""
_consider_string_weight: bool = False
_excel_string_weight_path: str = ""
_excel_continouse_path: str = ""
_s_file_path: str = ""
_dir_prefix: str = ""
_z_file_name: str = ""
def __init__(self, z_excel_file_path):
excel_pf = pd.read_excel(z_excel_file_path)
pf_dict = excel_pf.to_dict("records")[0]
z_excel_path = os.path.split(z_excel_file_path)
self._z_file_name = pf_dict["Z文件"]
dir_prefix = z_excel_path[0]
self._dir_prefix = dir_prefix
self._from_tower_name = pf_dict["起始塔号"]
self._end_tower_name = pf_dict["终止塔号"]
if pf_dict["是否考虑耐张串影响"] == "":
self._consider_string_weight = True
self._excel_string_weight_path = pf_dict["计算耐张串影响用表格"]
self._excel_continouse_path = pf_dict["计算连续档用表格"]
self._z_file_path = os.path.join(dir_prefix, pf_dict["Z文件"])
self._dwg_file_path = os.path.join(dir_prefix, pf_dict["DWG文件"])
self._s_file_path = os.path.join(dir_prefix, pf_dict["S文件"])
def draw(self):
continousePlate = ContinuousPlate(
self._dwg_file_path,
self._s_file_path,
self._from_tower_name,
self._end_tower_name,
)
continousePlate.draw()
string_impact_plate = StringImpactPlate(
self._dwg_file_path,
self._s_file_path,
self._from_tower_name,
self._excel_continouse_path,
self._excel_string_weight_path,
continousePlate.cad,
)
string_impact_plate.draw()
cad = continousePlate.cad
cad.doc.SaveAs(
os.path.join(self._dir_prefix, "ZT" + self._z_file_name + ".dwg")
)
cad.doc.Close(False)