stateestimation-self-deriva.../run.m

83 lines
3.1 KiB
Matlab

addpath('.\Powerflow')
[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee30.dat', '0');
%% 量测量
% 电压 节点电流 支路电流 节点功率 支路功率
%%
%% 状态量
% 电压 相角
%%
%% 开始生成量测量
sigma=0.05;% 标准差
%% 电压
%电压幅值
rVolt=Volt; %幅值
mVolt=rVolt.*(normrnd(0,sigma,length(Volt),1)+1);%电压量测量
%% 电流
%注入电流
cmpY=Y.*exp(1j*sparse(r,c,Yangle,length(Y),length(Y)));%复数导纳矩阵
cmpV=Volt.*exp(1j*Vangle); %复数电压
cmpI=cmpY*cmpV;% 注入电流
rI=abs(cmpI); %注入电流量测量要的是电流幅值
mI=rI.*(normrnd(0,sigma,length(rI),1)+1);%电流量测量
%% 支路电流
% 支路电流
lineI=newwordParameter.line.lineI;
lineJ=newwordParameter.line.lineJ;
lineR=newwordParameter.line.lineR;
lineX=newwordParameter.line.lineX;
lineB2=newwordParameter.line;
cmpBranchI=(cmpV(lineI)-cmpV(lineJ))./(lineR+1j*lineX);%复数支路电流
rBranchI=abs(cmpBranchI);% 支路电流幅值
mBranchI=rBranchI.*(normrnd(0,sigma,length(rBranchI),1)+1);%支路电流量测量
%% 支路功率
rBranchP=real((cmpV(lineI)-cmpV(lineJ)).*conj(cmpBranchI));
mBranchP=rBranchP.*(normrnd(0,sigma,length(rBranchP),1)+1);%支路功率量测量
rBranchQ=imag((cmpV(lineI)-cmpV(lineJ)).*conj(cmpBranchI));
mBranchQ=rBranchQ.*(normrnd(0,sigma,length(rBranchQ),1)+1);%支路功率量测量
%% 注入功率
rPD=PD(PD~=0);
PDi=find(PD~=0);
rQD=QD(QD~=0);
QDi=find(QD~=0);
rPG=PG(PG~=0);
PGi=find(PG~=0);
rQG=QG(QG~=0);
QGi=find(QG~=0);
mPD=rPD.*(normrnd(0,sigma,length(rPD),1)+1);
mQD=rQD.*(normrnd(0,sigma,length(rQD),1)+1);
mPG=rPG.*(normrnd(0,sigma,length(rPG),1)+1);
mQG=rQG.*(normrnd(0,sigma,length(rQG),1)+1);
%% 冗余度计算
stateVarCount=2*length(Volt);
measurements=length(mVolt)+length(mI)+length(mBranchI)+length(mBranchP)+length(mBranchQ)+length(mPG)+length(mQG);
fprintf('冗余度 %f\n',measurements/stateVarCount);
%% 进入状态估计计算
SEVolt=sdpvar(length(Volt),1);
SEVAngel=sdpvar(length(Vangle),1);
Objective=(SEVolt-mVolt)'*(1./sigma^2*eye(length(mVolt)))*(SEVolt-mVolt);%%电压
%% 支路电流
cmpSEV=SEVolt.*exp(1j*SEVAngel); %复数电压
cmpSEBranchI=(cmpV(lineI)-cmpV(lineJ))./(lineR+1j*lineX);%复数支路电流
SEBranchI=abs(cmpSEBranchI);% 支路电流幅值
Objective=Objective+(SEBranchI-mBranchI)'*(1./sigma^2*eye(length(mBranchI)))*(SEBranchI-mBranchI);%%电流
%% 支路功率
SEBranchP=real((cmpSEV(lineI)-cmpSEV(lineJ)).*conj(SEBranchI));
SEBranchQ=imag((cmpSEV(lineI)-cmpSEV(lineJ)).*conj(SEBranchI));
Objective=Objective+(SEBranchP-mBranchP)'*(1./sigma^2*eye(length(mBranchP)))*(SEBranchP-mBranchP);
Objective=Objective+(SEBranchQ-mBranchQ)'*(1./sigma^2*eye(length(mBranchQ)))*(SEBranchQ-mBranchQ);
%% 发电机注入功率
%% 0注入节点
zerosInjectionIndex=1:length(Volt);
zerosInjectionIndex=zerosInjectionIndex( ~(PD~=0|QD~=0|PG~=0|QG~=0) );
%% YALMIP求解
PQ=diag(SEVolt)*cmpY*SEVolt;
zeroInjP=real(PQ(zerosInjectionIndex));%% 0注入节点
zeroInjQ=imag(PQ(zerosInjectionIndex));%% 0注入节点
Constraints=[SEVAngel(Balance)==0,zeroInjP==0,zeroInjP==0];
% Constraints=[[zeros(length(c)) A' -eye(length(lbounds))]*x==-c;[A zeros(length(b)) zeros(length(b),length(lbounds))]*x<=b;10>=x>=0];
options = sdpsettings('verbose',2,'solver','ipopt');
solvesdp(Constraints,Objective,options)
double(Objective)
fprintf('相对误差\n');
(abs(rVolt-double(SEVolt)))./(rVolt)