parent
a4d726da90
commit
4ea4ceb639
12
run.m
12
run.m
|
|
@ -2,7 +2,7 @@ clear
|
||||||
clc
|
clc
|
||||||
% yalmip('clear')
|
% yalmip('clear')
|
||||||
addpath('.\Powerflow')
|
addpath('.\Powerflow')
|
||||||
[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee14.dat', '0');
|
[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee4.dat', '0');
|
||||||
%% 量测量
|
%% 量测量
|
||||||
% 电压 节点电流 支路电流 节点功率 支路功率
|
% 电压 节点电流 支路电流 节点功率 支路功率
|
||||||
%%
|
%%
|
||||||
|
|
@ -170,9 +170,9 @@ dLQij_dThetaj=dLQij_dThetaj(setdiff( 1:size(dLQij_dThetaj,1),zerosRXInd),:);
|
||||||
% dLPij_dVi+dLPij_dVj, dLPij_dThetai+dLPij_dThetaj;
|
% dLPij_dVi+dLPij_dVj, dLPij_dThetai+dLPij_dThetaj;
|
||||||
% dLQij_dVi+dLQij_dVj, dLQij_dThetai+dLQij_dThetaj];%jacobi
|
% dLQij_dVi+dLQij_dVj, dLQij_dThetai+dLQij_dThetaj];%jacobi
|
||||||
|
|
||||||
H=[dV_dV;
|
H=[dV_dV,dV_dTyta;
|
||||||
dLPij_dVi+dLPij_dVj ;
|
dLPij_dVi+dLPij_dVj,dLPij_dThetai+dLPij_dThetaj ;
|
||||||
dLQij_dVi+dLQij_dVj ];%jacobi
|
dLQij_dVi+dLQij_dVj,dLQij_dThetai+dLQij_dThetaj ];%jacobi
|
||||||
|
|
||||||
SEBranchI=BranchI( SEVolt.*exp(1j*SEVAngel),lineI,lineJ,lineR,lineX );%复数支路电流
|
SEBranchI=BranchI( SEVolt.*exp(1j*SEVAngel),lineI,lineJ,lineR,lineX );%复数支路电流
|
||||||
SEBranchP=BranchP( SEVolt.*exp(1j*SEVAngel),SEBranchI,lineI,lineB2 );
|
SEBranchP=BranchP( SEVolt.*exp(1j*SEVAngel),SEBranchI,lineI,lineB2 );
|
||||||
|
|
@ -194,9 +194,9 @@ g=-H'*W*(z-h);
|
||||||
dX=G\-g;
|
dX=G\-g;
|
||||||
maxD=max(abs(dX))
|
maxD=max(abs(dX))
|
||||||
% 更新变量
|
% 更新变量
|
||||||
SEVolt=SEVolt+dX(1:length(mVolt));
|
% SEVolt=SEVolt+dX(1:length(mVolt));
|
||||||
Iteration=Iteration+1;
|
Iteration=Iteration+1;
|
||||||
% SEVAngel=SEVAngel+dX(length(mVolt)+1:end);
|
SEVAngel=SEVAngel+dX(1:end);
|
||||||
end
|
end
|
||||||
%% 输出结果
|
%% 输出结果
|
||||||
fprintf('迭代%d次\n',Iteration);
|
fprintf('迭代%d次\n',Iteration);
|
||||||
|
|
|
||||||
87
公式/公式.tex
87
公式/公式.tex
|
|
@ -90,7 +90,7 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the
|
||||||
-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
线路无功功率Jacobi
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\frac{\partial Q_{12}}{\partial V_1}&=
|
\frac{\partial Q_{12}}{\partial V_1}&=
|
||||||
|
|
@ -119,5 +119,90 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the
|
||||||
&=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
&=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
变压器支路功率
|
||||||
|
\newline
|
||||||
|
变压器模型为
|
||||||
|
\newline
|
||||||
|
\begin{center}
|
||||||
|
----k:1----z----高压侧 \\
|
||||||
|
or \\
|
||||||
|
i----k:1----z----j \\
|
||||||
|
\end{center}
|
||||||
|
变压器支路功率
|
||||||
|
\newline
|
||||||
|
变压器有功输送功率
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
P_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
|
||||||
|
&=\frac{V_1^2}{k^2} G_{ij}-\frac{V_1}{k} V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
变压器无功输送功率
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
|
||||||
|
&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
变压器输送有功功率Jacobi
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial P_{ij}}{\partial V_1}=
|
||||||
|
2\frac{V_1}{k^2}G_{ij}-\frac{V_2}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial P_{12}}{\partial V_2}=
|
||||||
|
-\frac{V_1}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial P_{12}}{\partial \theta_1}
|
||||||
|
&=\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial P_{12}}{\partial \theta_2}&=
|
||||||
|
-\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
变压器输送无功功率Jacobi
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial Q_{12}}{\partial V_1}&=
|
||||||
|
-2\frac{V_1}{k^2}B_{12}-\frac{V_2}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial Q_{12}}{\partial V_2}&=
|
||||||
|
-\frac{V_1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial Q_{12}}{\partial \theta_1}&=
|
||||||
|
-\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{\partial Q_{12}}{\partial \theta_2}
|
||||||
|
&=\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
ps.已检验过线路的公式。
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue