addpath('.\Powerflow') [~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee30.dat', '0'); %% 量测量 % 电压 节点电流 支路电流 节点功率 支路功率 %% %% 状态量 % 电压 相角 %% %% 开始生成量测量 sigma=0.05;% 标准差 %% 电压 %电压幅值 rVolt=Volt; %幅值 mVolt=rVolt.*(normrnd(0,sigma,length(Volt),1)+1);%电压量测量 %% 电流 %注入电流 cmpY=Y.*exp(1j*sparse(r,c,Yangle,length(Y),length(Y)));%复数导纳矩阵 cmpV=Volt.*exp(1j*Vangle); %复数电压 cmpI=cmpY*cmpV;% 注入电流 rI=abs(cmpI); %注入电流量测量要的是电流幅值 mI=rI.*(normrnd(0,sigma,length(rI),1)+1);%电流量测量 %% 支路电流 % 支路电流 lineI=newwordParameter.line.lineI; lineJ=newwordParameter.line.lineJ; lineR=newwordParameter.line.lineR; lineX=newwordParameter.line.lineX; lineB2=newwordParameter.line; cmpBranchI=(cmpV(lineI)-cmpV(lineJ))./(lineR+1j*lineX);%复数支路电流 rBranchI=abs(cmpBranchI);% 支路电流幅值 mBranchI=rBranchI.*(normrnd(0,sigma,length(rBranchI),1)+1);%支路电流量测量 %% 支路功率 rBranchP=real((cmpV(lineI)-cmpV(lineJ)).*conj(cmpBranchI)); mBranchP=rBranchP.*(normrnd(0,sigma,length(rBranchP),1)+1);%支路功率量测量 rBranchQ=imag((cmpV(lineI)-cmpV(lineJ)).*conj(cmpBranchI)); mBranchQ=rBranchQ.*(normrnd(0,sigma,length(rBranchQ),1)+1);%支路功率量测量 %% 注入功率 rPD=PD(PD~=0); PDi=find(PD~=0); rQD=QD(QD~=0); QDi=find(QD~=0); rPG=PG(PG~=0); PGi=find(PG~=0); rQG=QG(QG~=0); QGi=find(QG~=0); mPD=rPD.*(normrnd(0,sigma,length(rPD),1)+1); mQD=rQD.*(normrnd(0,sigma,length(rQD),1)+1); mPG=rPG.*(normrnd(0,sigma,length(rPG),1)+1); mQG=rQG.*(normrnd(0,sigma,length(rQG),1)+1); %% 冗余度计算 stateVarCount=2*length(Volt); measurements=length(mVolt)+length(mI)+length(mBranchI)+length(mBranchP)+length(mBranchQ)+length(mPG)+length(mQG); fprintf('冗余度 %f\n',measurements/stateVarCount); %% 进入状态估计计算 SEVolt=sdpvar(length(Volt),1); SEVAngel=sdpvar(length(Vangle),1); Objective=(SEVolt-mVolt)'*(1./sigma^2*eye(length(mVolt)))*(SEVolt-mVolt);%%电压 %% 支路电流 cmpSEV=SEVolt.*exp(1j*SEVAngel); %复数电压 cmpSEBranchI=(cmpV(lineI)-cmpV(lineJ))./(lineR+1j*lineX);%复数支路电流 SEBranchI=abs(cmpSEBranchI);% 支路电流幅值 Objective=Objective+(SEBranchI-mBranchI)'*(1./sigma^2*eye(length(mBranchI)))*(SEBranchI-mBranchI);%%电流 %% 支路功率 SEBranchP=real((cmpSEV(lineI)-cmpSEV(lineJ)).*conj(SEBranchI)); SEBranchQ=imag((cmpSEV(lineI)-cmpSEV(lineJ)).*conj(SEBranchI)); Objective=Objective+(SEBranchP-mBranchP)'*(1./sigma^2*eye(length(mBranchP)))*(SEBranchP-mBranchP); Objective=Objective+(SEBranchQ-mBranchQ)'*(1./sigma^2*eye(length(mBranchQ)))*(SEBranchQ-mBranchQ); %% 0注入节点 zerosInjectionIndex=1:length(Volt); zerosInjectionIndex=zerosInjectionIndex( ~(PD~=0|QD~=0|PG~=0|QG~=0) ); PQ=diag(SEVolt)*conj(cmpY*SEVolt); zeroInjP=real(PQ(zerosInjectionIndex));%% 0注入节点 zeroInjQ=imag(PQ(zerosInjectionIndex));%% 0注入节点 %% 发电机注入功率 % 先找到只有发电机的节点 PDQDi=union(PDi,QDi); onlyPG=setdiff(PGi,PDQDi); onlyQG=setdiff(QGi,PDQDi); PG-real(PQ()) %% YALMIP求解 Constraints=[SEVAngel(Balance)==0,zeroInjP==0,zeroInjP==0]; % Constraints=[[zeros(length(c)) A' -eye(length(lbounds))]*x==-c;[A zeros(length(b)) zeros(length(b),length(lbounds))]*x<=b;10>=x>=0]; options = sdpsettings('verbose',2,'solver','ipopt'); solvesdp(Constraints,Objective,options) double(Objective) fprintf('相对误差\n'); (abs(rVolt-double(SEVolt)))./(rVolt)