\documentclass[10pt,a4paper,final]{report} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{fontspec}%使用xetex \setmainfont[BoldFont=黑体]{宋体} % 使用系统默认字体 \XeTeXlinebreaklocale "zh" % 针对中文进行断行 \XeTeXlinebreakskip = 0pt plus 1pt minus 0.1pt % 给予TeX断行一定自由度 \linespread{1.5} % 1.5倍行距 \begin{document} %\begin{equation} %\begin{aligned} %\frac{\partial P_{ij}}{\partial V_i} %&= %-V_{ij}(g_{ij}cos\theta_{ij}+b_{ij}sin\theta_{ij})+ %2(g_{ij}+g_{si})V_i %\end{aligned} %\end{equation} 线路功率(不考虑接地导纳) \newline \begin{equation} \begin{aligned} \dot{I}_{12}&=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) (G+jB) \\ &=[V_1 (cos\theta_1+jsin\theta_1) - V_2 (cos\theta_2+jsin\theta_2)](G+jB) \\ &=(V_1 cos\theta_1+ jV_1 sin\theta_1- V_2 cos \theta_2 -j V_2 sin \theta_2)(G+jB) \\ &=(V_1 cos \theta_1 -V_2 cos \theta_2)G + j(V_1 sin \theta_1- V_2 sin \theta_2)G \\&+j( V_1 cos \theta_1 -V_2 cos \theta_2)B + j(jV_1 sin \theta_1-jV_2 sin \theta_2)B \\ &=G(V_1 cos \theta_1- V_2 cos \theta_2) - B(V_1 sin \theta_1 -V_2 sin \theta_2) \\ &+jB(V_1 cos \theta_1 - V_2 cos \theta_2) + jG(V_1 sin \theta_1 - V_2 sin \theta_2) \\ &= V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2) \\ &+jV_1(Bcos \theta_1+Gsin\theta_1)-jV_2(Bcos\theta_2+Gsin\theta_2) \end{aligned} \end{equation} 电流的共轭复数 \begin{equation} \begin{aligned} \dot{I}^*_{12}&=V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2) \\ &-jV_1(Bcos \theta_1+Gsin\theta_1)+jV_2(Bcos\theta_2+Gsin\theta_2) \end{aligned} \end{equation} 线路复功率 \begin{equation} \begin{aligned} \dot{S}_{12}&=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) \dot{I}^*_{12} \\ &=[V_1 (cos\theta_1+jsin\theta_1) - V_2 (cos\theta_2+jsin\theta_2)]\dot{I}^*_{12} \\ &=[V_1 (cos\theta_1+jsin\theta_1) - V_2 (cos\theta_2+jsin\theta_2)] \\ &[V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2) -jV_1(Bcos \theta_1+Gsin\theta_1)+jV_2(Bcos\theta_2+Gsin\theta_2)]\\ &=V_1( G cos \theta_1-B sin \theta_1) [V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2)]\\ &-V_1( G cos \theta_1-B sin \theta_1) [jV_1(Bcos \theta_1+Gsin\theta_1)-jV_2(Bcos\theta_2+Gsin\theta_2)] \\ &- V_2 (cos\theta_2+jsin\theta_2) [V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2)]\\ &V_2 (cos\theta_2+jsin\theta_2) [jV_1(Bcos \theta_1+Gsin\theta_1)-jV_2(Bcos\theta_2+Gsin\theta_2)] \end{aligned} \end{equation} 另一种推导方式 \begin{equation} \begin{aligned} \dot{I}_{12}=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) (G+jB) \end{aligned} \end{equation} 电流的共轭复数 \begin{equation} \begin{aligned} \dot{I}^*_{12}=(V_1 e^{-j\theta_1} - V_2 e^{-j\theta_2} ) (G-jB) \end{aligned} \end{equation} 线路复功率 \begin{equation} \begin{aligned} \dot{S}_{12}&=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} )\dot{I}^*_{12} \\ &=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) (V_1 e^{-j\theta_1} - V_2 e^{-j\theta_2} ) (G-jB) \\ &=(V_1 e^{j\theta_1}V_1 e^{-j\theta_1} - V_1 e^{j\theta_1}V_2 e^{-j\theta_2} - V_2 e^{j\theta_2}V_1 e^{-j\theta_1}+ V_2 e^{j\theta_2}V_2 e^{-j\theta_2} ) (G-jB) \\ &=(V_1^2+V_2^2-V_1V_2e^{j(\theta_1-\theta_2)} -V_1V_2e^{j(\theta_2-\theta_1)} ) (G-jB) \\ &=[V_1^2+V_2^2 -V_1V_2(e^{j(\theta_1-\theta_2)}+e^{j(\theta_2-\theta_1)}) ](G-jB) \\ &=\{V_1^2+V_2^2-V_1V_2[cos(\theta_1-\theta_2)+jsin(\theta_1-\theta_2) +cos(\theta_2-\theta_1)+jsin(\theta_2-\theta_1)]\}(G-jB) \\ &=\{V_1^2+V_2^2-V_1V_2[cos(\theta_1-\theta_2) +cos(\theta_1-\theta_2)]\}(G-jB) \\ &=[V_1^2+V_2^2-2V_1V_2cos(\theta_1-\theta_2)](G-jB) \\ &=(V_1^2+V_2^2)G-j(V_1^2+V_2^2)B-j2V_1V_2cos(\theta_1-\theta_2)G-j2V_1V_2cos(\theta_1-\theta_2)(-jB) \\ &=(V_1^2+V_2^2)G-2V_1V_2cos(\theta_1-\theta_2)B -j(V_1^2+V_2^2)B-j2V_1V_2cos(\theta_1-\theta_2)G \end{aligned} \end{equation} \begin{equation} \begin{aligned} P_{12}=(V_1^2+V_2^2)G+2V_1V_2sin(\theta_1-\theta_2)B \end{aligned} \end{equation} \begin{equation} \begin{aligned} Q_{12}=-(V_1^2+V_2^2)B+2V_1V_2sin(\theta_1-\theta_2)G \end{aligned} \end{equation} 考虑接地支路,接地电流为 \begin{equation} \label{接地电流} \dot{I}_{1}=V_1e^{j\theta_1}(G_d+jB_d) \end{equation} (\ref{接地电流})共轭为 \begin{equation} \dot{I}_{1}^{*}=V_1e^{-j\theta_1}(G_d-jB_d) \end{equation} %Sd \begin{equation} \begin{aligned} \dot{S}_{1}&=V_1e^{j\theta_1}\dot{I}_{1}^{*} \\ &=V_1e^{j\theta_1} V_1e^{-j\theta_1}(G_d-jB_d) \\ &=V_1^2(G_d-jB_d) \end{aligned} \end{equation} 因而 \begin{equation} \begin{aligned} P_{1}&=V_1^2 G_d \\ \end{aligned} \end{equation} \begin{equation} \begin{aligned} Q_{1}&=-V_1^2 B_d \\ \end{aligned} \end{equation} 考虑节点支路后的注入电流 \begin{equation} \begin{aligned} \tilde{P}_{12}&=V_1^2 G_d +(V_1^2+V_2^2)G+2V_1V_2sin(\theta_1-\theta_2)B \end{aligned} \end{equation} \begin{equation} \begin{aligned} \tilde{Q}_{12}&=-V_1^2 B_d -(V_1^2+V_2^2)B+2V_1V_2sin(\theta_1-\theta_2)G \end{aligned} \end{equation} \end{document}