diff --git a/.gitignore b/.gitignore index 121711d..e0bad96 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,5 @@ -/Powerflow \ No newline at end of file +/Powerflow +/公式/*.aux +/公式/*.log +/公式/*.pdf +/公式/*.synctex.gz(busy) \ No newline at end of file diff --git a/公式/公式.tex b/公式/公式.tex index 38d99d8..7a861f7 100644 --- a/公式/公式.tex +++ b/公式/公式.tex @@ -9,146 +9,56 @@ \XeTeXlinebreakskip = 0pt plus 1pt minus 0.1pt % 给予TeX断行一定自由度 \linespread{1.5} % 1.5倍行距 \begin{document} -%\begin{equation} -%\begin{aligned} -%\frac{\partial P_{ij}}{\partial V_i} -%&= -%-V_{ij}(g_{ij}cos\theta_{ij}+b_{ij}sin\theta_{ij})+ -%2(g_{ij}+g_{si})V_i -%\end{aligned} -%\end{equation} 线路功率(不考虑接地导纳) -\newline \begin{equation} \begin{aligned} -\dot{I}_{12}&=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) -(G+jB) \\ -&=[V_1 (cos\theta_1+jsin\theta_1) - V_2 (cos\theta_2+jsin\theta_2)](G+jB) \\ -&=(V_1 cos\theta_1+ jV_1 sin\theta_1- V_2 cos \theta_2 -j V_2 sin \theta_2)(G+jB) \\ -&=(V_1 cos \theta_1 -V_2 cos \theta_2)G + j(V_1 sin \theta_1- V_2 sin \theta_2)G -\\&+j( V_1 cos \theta_1 -V_2 cos \theta_2)B + j(jV_1 sin \theta_1-jV_2 sin \theta_2)B \\ -&=G(V_1 cos \theta_1- V_2 cos \theta_2) - B(V_1 sin \theta_1 -V_2 sin \theta_2) \\ -&+jB(V_1 cos \theta_1 - V_2 cos \theta_2) + jG(V_1 sin \theta_1 - V_2 sin \theta_2) \\ -&= V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2) \\ -&+jV_1(Bcos \theta_1+Gsin\theta_1)-jV_2(Bcos\theta_2+Gsin\theta_2) +\dot{I}_{12}&=(V_1e^{j \theta_1} - V_2e^{j \theta_2}) +(G_{ij}+jB_{ij}) \end{aligned} \end{equation} -电流的共轭复数 +共轭后 \begin{equation} \begin{aligned} -\dot{I}^*_{12}&=V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2) \\ -&-jV_1(Bcos \theta_1+Gsin\theta_1)+jV_2(Bcos\theta_2+Gsin\theta_2) +\dot{I}^*_{12}&=(V_1e^{-j \theta_1} - V_2e^{-j \theta_2}) +(G_{ij}-jB_{ij}) \end{aligned} \end{equation} -线路复功率 \begin{equation} \begin{aligned} -\dot{S}_{12}&=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) +\dot{S}^*_{12}&=V_1e^{j \theta_1} \dot{I}^*_{12} \\ -&=[V_1 (cos\theta_1+jsin\theta_1) - V_2 (cos\theta_2+jsin\theta_2)]\dot{I}^*_{12} \\ -&=[V_1 (cos\theta_1+jsin\theta_1) - V_2 (cos\theta_2+jsin\theta_2)] \\ -&[V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2) --jV_1(Bcos \theta_1+Gsin\theta_1)+jV_2(Bcos\theta_2+Gsin\theta_2)]\\ -&=V_1( G cos \theta_1-B sin \theta_1) -[V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2)]\\ -&-V_1( G cos \theta_1-B sin \theta_1) -[jV_1(Bcos \theta_1+Gsin\theta_1)-jV_2(Bcos\theta_2+Gsin\theta_2)] \\ -&- V_2 (cos\theta_2+jsin\theta_2) -[V_1( G cos \theta_1-B sin \theta_1) -V_2 (G cos \theta_2 - B sin \theta_2)]\\ -&V_2 (cos\theta_2+jsin\theta_2) -[jV_1(Bcos \theta_1+Gsin\theta_1)-jV_2(Bcos\theta_2+Gsin\theta_2)] -\end{aligned} -\end{equation} -另一种推导方式 -\begin{equation} -\begin{aligned} -\dot{I}_{12}=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) -(G+jB) -\end{aligned} -\end{equation} -电流的共轭复数 -\begin{equation} -\begin{aligned} -\dot{I}^*_{12}=(V_1 e^{-j\theta_1} - V_2 e^{-j\theta_2} ) -(G-jB) -\end{aligned} -\end{equation} -线路复功率 -\begin{equation} -\begin{aligned} -\dot{S}_{12}&=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} )\dot{I}^*_{12} \\ -&=(V_1 e^{j\theta_1} - V_2 e^{j\theta_2} ) -(V_1 e^{-j\theta_1} - V_2 e^{-j\theta_2} ) -(G-jB) \\ -&=(V_1 e^{j\theta_1}V_1 e^{-j\theta_1} - V_1 e^{j\theta_1}V_2 e^{-j\theta_2} -- V_2 e^{j\theta_2}V_1 e^{-j\theta_1}+ V_2 e^{j\theta_2}V_2 e^{-j\theta_2} +&=V_1e^{j \theta_1} +(V_1e^{-j \theta_1} - V_2e^{-j \theta_2}) +(G_{ij}-jB_{ij}) \\ +&=(V_1e^{j \theta_1}V_1e^{-j \theta_1} +-V_1e^{j \theta_1}V_2e^{-j \theta_2} ) -(G-jB) \\ -&=(V_1^2+V_2^2-V_1V_2e^{j(\theta_1-\theta_2)} -V_1V_2e^{j(\theta_2-\theta_1)} ) -(G-jB) \\ -&=[V_1^2+V_2^2 --V_1V_2(e^{j(\theta_1-\theta_2)}+e^{j(\theta_2-\theta_1)}) -](G-jB) \\ -&=\{V_1^2+V_2^2-V_1V_2[cos(\theta_1-\theta_2)+jsin(\theta_1-\theta_2) -+cos(\theta_2-\theta_1)+jsin(\theta_2-\theta_1)]\}(G-jB) \\ -&=\{V_1^2+V_2^2-V_1V_2[cos(\theta_1-\theta_2) -+cos(\theta_1-\theta_2)]\}(G-jB) \\ -&=[V_1^2+V_2^2-2V_1V_2cos(\theta_1-\theta_2)](G-jB) \\ -&=(V_1^2+V_2^2)G-j(V_1^2+V_2^2)B-j2V_1V_2cos(\theta_1-\theta_2)G-j2V_1V_2cos(\theta_1-\theta_2)(-jB) \\ -&=(V_1^2+V_2^2)G-2V_1V_2cos(\theta_1-\theta_2)B --j(V_1^2+V_2^2)B-j2V_1V_2cos(\theta_1-\theta_2)G +(G_{ij}-jB_{ij}) \\ +&=[V_1^2-V_1V_2e^{j (\theta_1 - \theta_2) } +] +(G_{ij}-jB_{ij}) \\ +&=\{V_1^2-V_1V_2[cos(\theta_1 - \theta_2)+jsin (\theta_1 - \theta_2) ]\} +(G_{ij}-jB_{ij}) \\ +&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij} \\ +&+[V_1^2-V_1V_2cos(\theta_1 - \theta_2)](-jB_{ij}) \\ +&-jV_1V_2sin (\theta_1 - \theta_2)G_{ij} \\ +&-jV_1V_2sin (\theta_1 - \theta_2)(-jB_{ij}) \\ +&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\ +&-j[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-jV_1V_2sin (\theta_1 - \theta_2)G_{ij} \end{aligned} \end{equation} +有功传输功率 \begin{equation} \begin{aligned} -P_{12}=(V_1^2+V_2^2)G+2V_1V_2sin(\theta_1-\theta_2)B +\dot{P}_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\ +&=V_1^2G_{ij}-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] \end{aligned} \end{equation} +无功传输功率 \begin{equation} \begin{aligned} -Q_{12}=-(V_1^2+V_2^2)B+2V_1V_2sin(\theta_1-\theta_2)G -\end{aligned} -\end{equation} -考虑接地支路,接地电流为 -\begin{equation} -\label{接地电流} -\dot{I}_{1}=V_1e^{j\theta_1}(G_d+jB_d) -\end{equation} -(\ref{接地电流})共轭为 -\begin{equation} -\dot{I}_{1}^{*}=V_1e^{-j\theta_1}(G_d-jB_d) -\end{equation} -%Sd -\begin{equation} -\begin{aligned} -\dot{S}_{1}&=V_1e^{j\theta_1}\dot{I}_{1}^{*} \\ -&=V_1e^{j\theta_1} -V_1e^{-j\theta_1}(G_d-jB_d) \\ -&=V_1^2(G_d-jB_d) -\end{aligned} -\end{equation} -因而 -\begin{equation} -\begin{aligned} -P_{1}&=V_1^2 G_d \\ -\end{aligned} -\end{equation} -\begin{equation} -\begin{aligned} -Q_{1}&=-V_1^2 B_d \\ -\end{aligned} -\end{equation} -考虑节点支路后的注入电流 -\begin{equation} -\begin{aligned} -\tilde{P}_{12}&=V_1^2 G_d -+(V_1^2+V_2^2)G+2V_1V_2sin(\theta_1-\theta_2)B -\end{aligned} -\end{equation} -\begin{equation} -\begin{aligned} -\tilde{Q}_{12}&=-V_1^2 B_d --(V_1^2+V_2^2)B+2V_1V_2sin(\theta_1-\theta_2)G +\dot{Q}_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\ +&=-V_1^2B_{ij}-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \end{aligned} \end{equation} \end{document}