更新电流,有功,无功计算公式。开始考虑接地支路。

Signed-off-by: facat <facat@facat.cn>
This commit is contained in:
facat
2013-09-01 17:30:40 +08:00
parent ce9a59ec09
commit a9d49d8edd
5 changed files with 79 additions and 18 deletions

View File

@@ -61,11 +61,25 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the
&=-V_1^2B_{ij}-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
考虑接地支路后(利用Ali Abur 书上的公式)
\newline
有功传输功率
\begin{equation}
\begin{aligned}
P_{ij}&=V_1^2(G_{ij}+G_{is})-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
无功传输功率
\begin{equation}
\begin{aligned}
Q_{ij}&=-V_1^2(B_{ij}+B_{is})-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
线路有功功率Jacobi
\begin{equation}
\begin{aligned}
\frac{\partial P_{ij}}{\partial V_1}=
2V_1G_{ij}-V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
2V_1(G_{ij}+G_{is})-V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
@@ -94,7 +108,7 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial V_1}&=
-2V_1B_{12}-V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
-2V_1(B_{12}+B_{is})-V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
@@ -206,20 +220,21 @@ ps.已检验过线路的公式。
以上公式已经可以完成状态估计,若要实现更好的收敛性,需要利用二阶导数。
\par
线路支路功率二阶导数
有功部分
\begin{equation}
\begin{aligned}
\frac{\partial^2 P_{12}}{\partial V_1^2}&=
\frac{-2}{k^2}B_{12}\\
&=\frac{-2B_{12}}{k^2}
\frac{2}{k^2}(G_{12}+G_{1s})\\
&=\frac{2 (G_{12}+G_{1s} ) } {k^2}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial^2 P_{12}}{\partial V_1 \partial V_2 }&=
\frac{-1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
\frac{-1}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] \\
&=
\frac{-[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]}{k}
\frac{-[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]}{k}
\end{aligned}
\end{equation}
@@ -232,26 +247,69 @@ ps.已检验过线路的公式。
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial \theta_1^2}&=
V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\frac{V_1}{k} V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial \theta_1 \partial \theta_2}&=
V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
\frac{V_1}{k} V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
&=
-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
- \frac{V_1}{k} V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial \theta_2^2}&=
-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
- \frac{V_1}{k} V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
&=
V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\frac{V_1}{k} V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
无功部分
\begin{equation}
\begin{aligned}
\frac{\partial^2 Q_{12}}{\partial V_1 \partial V_1}&=
-2\frac{( B_{12}+B_{1s})}{k^2}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial^2 Q_{12}}{\partial V_1 \partial V_2}&=
-\frac{1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial^2 Q_{12}}{\partial V_2^2}&=0
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial^2 Q_{12}}{\partial \theta_1^2}&=
-\frac{V_1}{k}V_2[-sin(\theta_1 - \theta_2)G_{ij}+cos (\theta_1 - \theta_2)B_{ij}] \\
&=\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial^2 Q_{12}}{\partial \theta_1 \partial \theta_2}&=
-\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial^2 Q_{12}}{\partial \theta_2^2}
&=\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
以上公式对线路和没有计及接地支路的变压器适用,只是线路中变比$k$为1.
\end{document}