65
公式/公式.tex
65
公式/公式.tex
@@ -25,7 +25,7 @@
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{S}^*_{12}&=V_1e^{j \theta_1}
|
||||
\dot{S}_{12}&=V_1e^{j \theta_1}
|
||||
\dot{I}^*_{12} \\
|
||||
&=V_1e^{j \theta_1}
|
||||
(V_1e^{-j \theta_1} - V_2e^{-j \theta_2})
|
||||
@@ -50,15 +50,74 @@
|
||||
有功传输功率
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{P}_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
|
||||
P_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
|
||||
&=V_1^2G_{ij}-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
无功传输功率
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{Q}_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
|
||||
Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
|
||||
&=-V_1^2B_{ij}-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
线路有功功率Jacobi
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{ij}}{\partial V_1}=
|
||||
2V_1G_{ij}-V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial V_2}=
|
||||
-V_1[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial \theta_1}&=
|
||||
-V_1V_2[-sin(\theta_1 - \theta_2)G_{ij}+cos (\theta_1 - \theta_2)B_{ij}] \\
|
||||
&=V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial \theta_2}&=
|
||||
-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial V_1}&=
|
||||
-2V_1B_{12}-V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial V_2}&=
|
||||
-V_1[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial \theta_1}&=
|
||||
-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial \theta_2}&=
|
||||
-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
|
||||
&=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user