重构后把不同功能独立出来。

Signed-off-by: facat <facat@facat.com>
This commit is contained in:
facat 2021-06-04 18:02:24 +08:00
parent edc09e5c61
commit ef683999b4
5 changed files with 194 additions and 15 deletions

3
.gitignore vendored
View File

@ -1,2 +1,3 @@
.idea .idea
__pycache__ __pycache__
*.dxf

View File

@ -0,0 +1,131 @@
import copy
import math
import ezdxf
from type3d import Vector3D
import numpy as np
import transformation
from typing import List, Union, Tuple
class Line:
def __init__(
self,
start_p: Vector3D,
end_p: Vector3D,
tension_k: float,
n_point: int,
):
self._start_p: Vector3D = start_p
self._end_p: Vector3D = end_p
self._tension_k: float = tension_k
self._n_point: int = n_point
self._span = 0
self._points = None
self._rotation = None
def curve(self):
if self._points:
return self._points
start_p = self._start_p
end_p = self._end_p
tension_k = self._tension_k
n_point = self._n_point
# 右手坐标系Z朝上
line = Vector3D(end_p.x, end_p.y, end_p.z) - Vector3D(
start_p.x, start_p.y, start_p.z
)
# 计算与X轴的角度
xy_project = copy.deepcopy(line) # 投影到xy平面上
xy_project.z = 0
x_abs_angel = xy_project.angle_to(Vector3D(1, 0, 0))
x_angel = x_abs_angel * np.sign(xy_project.y)
height = end_p.z - start_p.z
span: float = abs(xy_project)
self._span = span
span_l = np.linspace(0, span, n_point) # 档距
z_points: Tuple[float] = (
start_p.z
+ span_l * height / span
- span_l * (span - span_l) * tension_k / math.cos(math.atan(height / span))
)
p_points: List[
Union[List[float, float, float], Tuple[float, float, float]]
] = list() # 未旋转之前的伪坐标
for foo in range(len(span_l)):
p_points.append((span_l[foo] + start_p.x, start_p.y, z_points[foo]))
# 绕Z轴旋转
rotation = transformation.Rotation(
x_angel,
[start_p.x, start_p.y, start_p.z],
[start_p.x, start_p.y, start_p.z + 1],
)
self._rotation = rotation
points = rotation.rotate(
p_points,
)
self._points = points
return points
def sag(self):
# msp.add_polyline3d(
# [(start_p.x, start_p.y, start_p.z), (end_p.x, end_p.y, end_p.z)]
# )
start_p = self._start_p
end_p = self._end_p
span = self._span
height = end_p.z - start_p.z
middle_span = span / 2
points = self._points
n_point = self._n_point
middle_z = points[int(n_point / 2)][2]
rotation = self._rotation
sag_points = rotation.rotate(
[
[start_p.x, start_p.y, start_p.z],
[
middle_span + start_p.x,
start_p.y,
start_p.z + middle_span * height / span,
],
[middle_span + start_p.x, start_p.y, middle_z],
[
middle_span + start_p.x,
start_p.y,
start_p.z + middle_span * height / span,
],
[start_p.x + span, start_p.y, end_p.z],
]
)
return sag_points
def swing(self, angel):
points = self._points
start_p = self._start_p
end_p = self._end_p
swing_rotation = transformation.Rotation(
angel,
[start_p.x, start_p.y, start_p.z],
[end_p.x, end_p.y, end_p.z],
)
swing_point = swing_rotation.rotate(points)
return swing_point
class Canvas:
def __init__(self):
self._doc = None
self._msp = None
def init_canvas(self):
doc = ezdxf.new()
self._doc = doc
msp = doc.modelspace()
self._msp = msp
def draw(self, points):
msp = self._msp
msp.add_polyline3d(points)
def save(self, file_path):
doc = self._doc
doc.saveas(file_path)

16
main.py
View File

@ -1,9 +1,13 @@
import math import math
from transformation import rotation
import numpy as np from graphic import Canvas, Line
from type3d import Vector3D
if __name__ == "__main__": if __name__ == "__main__":
t = rotation( canvas = Canvas()
45 / 180 * math.pi, np.array([0, 0, 1]), np.array([[1, 1, 0], [2, 3, 4]]) canvas.init_canvas()
) line = Line(Vector3D(20, 30, 0), Vector3D(400, 100, 1), 0.3 * 1e-3, 400)
print(t) canvas.draw(line.curve())
canvas.draw(line.sag())
canvas.draw(line.swing(80/180*math.pi))
canvas.save("lwpolyline1.dxf")

View File

@ -1,5 +1,6 @@
import numpy as np import numpy as np
from math import cos, sin from math import cos, sin
from typing import List, Union, Tuple
def create_rx(unit_axis: np.ndarray) -> np.ndarray: def create_rx(unit_axis: np.ndarray) -> np.ndarray:
@ -32,16 +33,41 @@ def create_t(axis: np.ndarray) -> np.ndarray:
return np.array([[1, 0, 0, -x1], [0, 1, 0, -y1], [0, 0, 1, -z1], [0, 0, 0, 1]]) return np.array([[1, 0, 0, -x1], [0, 1, 0, -y1], [0, 0, 1, -z1], [0, 0, 0, 1]])
def rotation(angel: float, axis: np.ndarray, points: np.ndarray): def rotation_matrix(
angel: float, axis_start: np.ndarray, axis_end: np.ndarray
) -> np.ndarray:
# 依据《计算机图形学》第4版 9.28公式 # 依据《计算机图形学》第4版 9.28公式
axis = axis_end - axis_start
unit_axis = axis / np.linalg.norm(axis) unit_axis = axis / np.linalg.norm(axis)
rz = create_rz(angel) rz = create_rz(angel)
rx = create_rx(unit_axis) rx = create_rx(unit_axis)
ry = create_ry(unit_axis) ry = create_ry(unit_axis)
t = create_t(axis) t = create_t(axis_start)
t_i = np.linalg.inv(t) t_i = np.linalg.inv(t)
rx_i = np.linalg.inv(rx) rx_i = np.linalg.inv(rx)
ry_i = np.linalg.inv(ry) ry_i = np.linalg.inv(ry)
r_transform = t_i.dot(rx_i.dot(ry_i.dot(rz.dot(ry.dot(rx.dot(t)))))) r_transform = t_i @ rx_i @ ry_i @ rz @ ry @ rx @ t
expand_point = np.concatenate((points, np.ones((points.shape[0], 1))), axis=1) return r_transform
return r_transform.dot(expand_point.T)
def rotation(
angel: float, axis_start: np.ndarray, axis_end: np.ndarray, points: np.ndarray
) -> np.ndarray:
_rotation = Rotation(angel, axis_start.tolist(), axis_end.tolist())
return _rotation.rotate(points.tolist())
class Rotation:
def __init__(self, angel: float, axis_start: List[float], axis_end: List[float]):
self._r_transform = rotation_matrix(
angel, np.array(axis_start), np.array(axis_end)
)
def rotate(self, points: List[Union[List[float], Tuple[float]]])->List:
np_points = np.array(points)
r_transform = self._r_transform
expand_point = np.concatenate(
(np_points, np.ones((np_points.shape[0], 1))), axis=1
)
transformed_points = r_transform @ expand_point.T
return transformed_points[:-1, :].T.tolist()

View File

@ -1,5 +1,22 @@
import math
class Vector3D: class Vector3D:
def __init__(self, x, y, z): def __init__(self, x, y, z):
self.x = x self.x:float = x
self.y = y self.y:float = y
self.z = z self.z:float = z
def __sub__(self, other):
return Vector3D(self.x - other.x, self.y - other.y, self.z - other.z)
def __abs__(self) -> float:
return (self.x ** 2 + self.y ** 2 + self.z ** 2) ** 0.5
# 计算两向量间夹角
def angle_to(self, other):
return math.acos(
abs(self.x * other.x + self.y * other.y + self.z * other.z)
/ abs(self)
/ abs(other)
)