151 lines
6.4 KiB
Matlab
151 lines
6.4 KiB
Matlab
clc
|
||
clear
|
||
%% 自适应模拟电荷法
|
||
% [1]. 任巍巍, 孙.A.宗.A., 一种较准确的分裂导线表面场强计算方法. 电网技术, 2006(04): 第92-96页.
|
||
% [2]. 陈习文, 特高压直流输电线路电磁环境的研究, 2012, 北京交通大学.
|
||
% 采用文献的结果: 蒋兴良, 胡.A.舒.A., Analysis of Conductors' Surface Electric Field of UHVDC Transmission Lines Based on Optimized Charge Simulation Method. 高电压技术, 2008(12): p. 2547-2551.
|
||
%%
|
||
%设置几个参数
|
||
semi_lineDistance=450;%分裂间距
|
||
semi_lineCount=6;%分裂数
|
||
ConductorX=[-11000,11000];%导线间距
|
||
ConductorY=[22000,22000,];%导线距地高度
|
||
GroundX=[-11000,11000];%地线坐标
|
||
GroundY=[30000,30000];
|
||
CSM_N=50;%每一个子导线的模拟电荷数
|
||
subconductorR=16.8;%子导线半径
|
||
phaseN=2;%相数,单回三相
|
||
groundN=2;%地线数量
|
||
%%
|
||
%设置电压
|
||
% Volt_=[1100/sqrt(3);1100/sqrt(3)*exp(1j*4/3*pi);1100/sqrt(3)*exp(1j*2/3*pi);];
|
||
Volt_=[800;-800;0;0];
|
||
Volt=[];
|
||
for vLoop=1:phaseN
|
||
Volt=[Volt;Volt_(vLoop)*ones(CSM_N*semi_lineCount,1);];
|
||
end
|
||
for vLoop=1:groundN
|
||
Volt=[Volt;Volt_(vLoop+phaseN)*ones(CSM_N,1);];
|
||
end
|
||
%按分裂数和分裂导线间距布置单相线路导线
|
||
%用极坐标
|
||
arc=2*pi/semi_lineCount;
|
||
CSM_arc=2*pi/CSM_N;
|
||
%子导线中心到导线中心的距离
|
||
R=semi_lineDistance/2/sin(arc/2);
|
||
%计算模拟电荷的位置
|
||
r1=8;
|
||
error=10000;
|
||
step=1/10;
|
||
maxLoop=round((subconductorR-r1)/step);
|
||
for Loop=1:maxLoop;
|
||
simulationChargePos=ones(CSM_N,1);
|
||
simulationChargeABCPos=[];
|
||
matchPos=[];
|
||
for I=1:CSM_N
|
||
simulationChargePos(I)=exp(1j*((I-1)*CSM_arc+CSM_arc/2))*r1;%逆时针转一个角度
|
||
end
|
||
for phaseLoop=1:phaseN
|
||
for sC=1:semi_lineCount
|
||
simulationChargeABCPos=[simulationChargeABCPos;simulationChargePos+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+exp(1j*((sC-1)*arc+arc/2))*R];%移动到子导线中心
|
||
%同时计算匹配点的位置
|
||
matchPos=[matchPos;simulationChargePos/r1*subconductorR+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+exp(1j*((sC-1)*arc+arc/2))*R];
|
||
end
|
||
end
|
||
%地线的
|
||
for groundLoop=1:groundN
|
||
%simulationChargeABCPos=[simulationChargeABCPos;simulationChargePos+GroundX(phaseLoop)+1j*GroundY(phaseLoop)];%移动到子导线中心
|
||
simulationChargeABCPos=[simulationChargeABCPos;simulationChargePos+GroundX(groundLoop)+1j*GroundY(groundLoop)];%移动到子导线中心
|
||
%同时计算匹配点的位置
|
||
matchPos=[matchPos;simulationChargePos/r1*subconductorR+GroundX(groundLoop)+1j*GroundY(groundLoop)];
|
||
% matchPos=[matchPos;GroundX(groundLoop)+1j*GroundY(groundLoop)];
|
||
end
|
||
% simulationChargeAPos=simulationChargePos+ConductorX(1)+1j*ConductorY(1);
|
||
% simulationChargeBPos=simulationChargePos+ConductorX(2)+1j*ConductorY(2);
|
||
% simulationChargePos=simulationChargeABCPos;
|
||
%计算电位系数
|
||
% H=diag(imag(simulationChargeABCPos));
|
||
% r=subconductorR*eye(length(imag(simulationChargeABCPos)));%导线自几何均距
|
||
%导线与导线的距离
|
||
matSimulationChargePos=repmat(simulationChargeABCPos,1,length(simulationChargeABCPos));
|
||
matMatchPos=repmat(conj(matchPos'),length(simulationChargeABCPos),1);
|
||
CMS2MatchPointDistance=abs(matSimulationChargePos-matMatchPos);
|
||
% conductor2conductorDistance=abs(conductor2conductorDistance-diag(diag(conductor2conductorDistance)));
|
||
matMirrorChargePos=conj(matSimulationChargePos);%虚部取负号
|
||
mirrorCharge2MatchPointDistance=abs(matMirrorChargePos-matMatchPos);
|
||
% conductor2MirrorDistance=abs(conductor2MirrorDistance-diag(diag(conductor2MirrorDistance)));
|
||
eslong=8.854187817*10^-12*1000;
|
||
eslong=1;
|
||
% P1=1/2/pi/eslong*log(2*H./r);
|
||
% P1(isnan(P1))=0;
|
||
P2=1/2/pi/eslong*log(mirrorCharge2MatchPointDistance./CMS2MatchPointDistance);
|
||
% P2(isnan(P2))=0;
|
||
% P=P1+P2;
|
||
P=P2;
|
||
%求电荷
|
||
QRI=P\Volt;
|
||
%选检验导线上一个角度
|
||
vrfRelA=linspace(0,2*pi,200)';%vrf=verify
|
||
%计算检验点相对于子导线的位置
|
||
vrfRelPos=exp(1j*vrfRelA)*subconductorR;
|
||
%移动坐标,使验证的子导线中心和实际子导线中心重合。
|
||
vrfPos=[];
|
||
for phaseLoop=1:phaseN
|
||
for sC=1:semi_lineCount
|
||
vrfPos=[vrfPos;exp(1j*((sC-1)*arc+arc/2))*R+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+vrfRelPos];
|
||
end
|
||
end
|
||
for groundLoop=1:groundN
|
||
vrfPos=[vrfPos;GroundX(groundLoop)+1j*GroundY(groundLoop)+vrfRelPos];
|
||
end
|
||
%计算这一点的电位系数
|
||
matVrfPos=repmat(vrfPos,1,length(simulationChargeABCPos));
|
||
vrf2ConductorDistance=abs(matVrfPos-repmat(conj(simulationChargeABCPos'),length(vrfPos),1));
|
||
vrf2MirrorDistance=abs(matVrfPos-repmat(conj(conj(simulationChargeABCPos')),length(vrfPos),1));
|
||
Pij=1/2/pi/eslong*log(vrf2MirrorDistance./vrf2ConductorDistance);
|
||
%计算电压
|
||
V=Pij*QRI;
|
||
Vvalidation=[];
|
||
for phaseLoop=1:phaseN
|
||
Vvalidation=[Vvalidation;Volt_(phaseLoop)*ones(semi_lineCount*200,1);];
|
||
end
|
||
for groundLoop=1:groundN
|
||
Vvalidation=[Vvalidation;Volt_(groundLoop+phaseN)*ones(200,1);];
|
||
end
|
||
error=abs((V-Vvalidation)./Vvalidation);
|
||
error=[error(1:phaseN*semi_lineCount*200);abs(V(phaseN*semi_lineCount*200+1:end)-Vvalidation(phaseN*semi_lineCount*200+1:end))];
|
||
% error(isinf(error))=0;
|
||
error=sum(error)/length(Vvalidation)
|
||
%以下是验证部分
|
||
if error<0.01
|
||
break;
|
||
end
|
||
r1=r1+1*step;
|
||
end
|
||
display('Finished.');
|
||
if Loop<maxLoop
|
||
display('Converged.');
|
||
end
|
||
display(Loop);
|
||
%计算场强
|
||
ABCy=imag(repmat(simulationChargeABCPos,1,length(vrfPos)));
|
||
ABCx=real(repmat(simulationChargeABCPos,1,length(vrfPos)));
|
||
y=imag(conj(matVrfPos'));
|
||
x=real(conj(matVrfPos'));
|
||
ERy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||
EIy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||
ERx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||
EIx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||
E2=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2+((ERy.^2-EIy.^2+ERx.^2-EIx.^2).^2+4*(ERy.*EIy+ERx.*EIx).^2).^.5);
|
||
E3=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2);
|
||
Emat=1/pi/2./eslong.*repmat(conj(QRI'),length(vrfPos),1)./(vrf2ConductorDistance.^2).*(matVrfPos-repmat(conj(simulationChargeABCPos'),length(vrfPos),1))./vrf2ConductorDistance;
|
||
E=sum(Emat,2);
|
||
|
||
|
||
|
||
max(sqrt(2)*abs(E));
|
||
|
||
scatter(real(simulationChargeABCPos(1:length(simulationChargeABCPos)/1)),imag(simulationChargeABCPos(1:length(simulationChargeABCPos)/1)),[],'r');
|
||
axis equal
|
||
hold on;
|
||
scatter(real(vrfPos),imag(vrfPos),[],'k'); |