132 lines
5.8 KiB
Matlab
132 lines
5.8 KiB
Matlab
clc
|
||
clear
|
||
%% 逐次镜像法
|
||
% [1]. 付宾兰, 邵.A., 高压输电线路分裂导线表面和周围电场的计算. 电网技术, 1984(Z1): 第83-91页.
|
||
% [2]. 韦钢与李海峰, 同杆并架多回线下方的电场强度和感应电压. 中国电力, 1999(03): 第39-42页.
|
||
% 采用文献的结果: 蒋兴良, 胡.A.舒.A., Analysis of Conductors' Surface Electric Field of UHVDC Transmission Lines Based on Optimized Charge Simulation Method. 高电压技术, 2008(12): p. 2547-2551.
|
||
%%
|
||
%设置几个参数
|
||
semi_lineDistance=450;%分裂间距
|
||
semi_lineCount=6;%分裂数
|
||
ConductorX=[-11000,11000];%导线间距
|
||
ConductorY=[22000,22000,30000,30000];%导线距地高度
|
||
GroundX=[-11000,11000];%地线坐标
|
||
GroundY=[30000,30000];
|
||
subconductorR=16.8;%子导线半径
|
||
phaseN=2;%相数,单回三相
|
||
groundN=2;%地线数量
|
||
%%
|
||
eslong=8.854187817*10^-12*1000;
|
||
eslong=1;
|
||
%设置电压
|
||
% Volt_=[1100/sqrt(3);1100/sqrt(3)*exp(1j*4/3*pi);1100/sqrt(3)*exp(1j*2/3*pi);];
|
||
Volt_=[800;-800;0;0];
|
||
Volt=[];
|
||
for vLoop=1:phaseN
|
||
Volt=[Volt;Volt_(vLoop)*ones(semi_lineCount,1);];
|
||
end
|
||
for vLoop=1:groundN
|
||
Volt=[Volt;Volt_(vLoop+phaseN);];
|
||
end
|
||
%按分裂数和分裂导线间距布置单相线路导线
|
||
%用极坐标
|
||
arc=2*pi/semi_lineCount;
|
||
%子导线中心到导线中心的距离
|
||
R=semi_lineDistance/2/sin(arc/2);
|
||
%计算导线互电位和自电位系数
|
||
subconductorPos=[];
|
||
for phaseLoop=1:phaseN%导线
|
||
for sC=1:semi_lineCount
|
||
subconductorPos=[subconductorPos;ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+exp(1j*((sC-1)*arc+arc/2))*R];%移动到子导线中心
|
||
%同时计算匹配点的位置
|
||
end
|
||
end
|
||
for grondLoop=1:groundN%地线
|
||
subconductorPos=[subconductorPos;GroundX(grondLoop)+1j*GroundY(grondLoop)];%移动到子导线中心
|
||
end
|
||
mirrorSubconductorPos=conj(subconductorPos);%获得子导线镜像
|
||
H=diag(imag(subconductorPos));
|
||
r=eye(length(H))*subconductorR;%暂时认为地线和导线半径一样
|
||
matSubconductor=repmat(subconductorPos,1,length(subconductorPos));
|
||
conductor2conductorDistance=abs(matSubconductor-conj(matSubconductor'));
|
||
conductor2MirrorDistance=abs(matSubconductor-repmat(conj(mirrorSubconductorPos'),length(subconductorPos),1));
|
||
P1=1/2/pi/eslong*log(2*H./r);
|
||
P1(isnan(P1))=0;
|
||
P2=1/2/pi/eslong*log(conductor2MirrorDistance./conductor2conductorDistance);
|
||
P2(isinf(P2))=0;
|
||
Pij=P1+P2;
|
||
%求电荷
|
||
QRI=Pij\Volt;
|
||
% 计算镜像电荷
|
||
%只计算同极性和同极性对地镜像的镜像
|
||
innerMirrorPos=[];
|
||
innerMirrorQ=[];%内部镜像的电荷
|
||
for phaseLoop=1:phaseN
|
||
for sCOuter=1:semi_lineCount
|
||
for sCInner=1:semi_lineCount
|
||
if sCInner==sCOuter
|
||
innerMirrorPos=[innerMirrorPos;subconductorPos((phaseLoop-1)*semi_lineCount+sCOuter)];%先预留一个位置
|
||
innerMirrorQ=[innerMirrorQ;sum(QRI(1+(phaseLoop-1)*semi_lineCount:phaseLoop*semi_lineCount))];
|
||
continue
|
||
end
|
||
innerMirrorPos=[innerMirrorPos;subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount)+subconductorR^2/abs(subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount)-subconductorPos(sCInner+(phaseLoop-1)*semi_lineCount))*(subconductorPos(sCInner+(phaseLoop-1)*semi_lineCount)-subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount))./(abs(subconductorPos(sCInner+(phaseLoop-1)*semi_lineCount)-subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount)))];
|
||
innerMirrorQ=[innerMirrorQ;-QRI(sCInner+(phaseLoop-1)*semi_lineCount)];
|
||
end
|
||
end
|
||
end
|
||
|
||
for groundLoop=1:groundN%地线只用一根导线等效
|
||
innerMirrorPos=[innerMirrorPos;subconductorPos(groundLoop+semi_lineCount*phaseN)];%先预留一个位置
|
||
innerMirrorQ=[innerMirrorQ;sum(QRI(groundLoop+semi_lineCount*phaseN))];
|
||
end
|
||
%以下是验证部分
|
||
%选检验导线上一个角度
|
||
verifyPointN=200;
|
||
vrfRelA=linspace(0,2*pi,verifyPointN)';%vrf=verify
|
||
%计算检验点相对于子导线的位置
|
||
vrfRelPos=exp(1j*vrfRelA)*subconductorR;
|
||
%移动坐标,使验证的子导线中心和实际子导线中心重合。
|
||
vrfPos=[];
|
||
for phaseLoop=1:phaseN
|
||
for sC=1:semi_lineCount
|
||
vrfPos=[vrfPos;exp(1j*((sC-1)*arc+arc/2))*R+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+vrfRelPos];
|
||
end
|
||
end
|
||
for groundLoop=1:groundN
|
||
vrfPos=[vrfPos;GroundX(groundLoop)+1j*GroundY(groundLoop)+vrfRelPos];
|
||
end
|
||
%计算这一点的电位系数
|
||
matVrfPos=repmat(vrfPos,1,length(innerMirrorPos));
|
||
vrf2ConductorDistance=abs(matVrfPos-repmat(conj(innerMirrorPos'),length(vrfPos),1));
|
||
vrf2MirrorDistance=abs(matVrfPos-repmat(conj(conj(innerMirrorPos')),length(vrfPos),1));
|
||
Pij=1/2/pi/eslong*log(vrf2MirrorDistance./vrf2ConductorDistance);
|
||
%计算电压
|
||
V=Pij*innerMirrorQ;
|
||
Vvalidation=[];
|
||
for phaseLoop=1:phaseN
|
||
Vvalidation=[Vvalidation;Volt_(phaseLoop)*ones(semi_lineCount*verifyPointN,1);];
|
||
end
|
||
for groundLoop=1:groundN
|
||
Vvalidation=[Vvalidation;Volt_(groundLoop+phaseN)*ones(verifyPointN,1);];
|
||
end
|
||
error=abs((V-Vvalidation)./Vvalidation);
|
||
error=sum(error)/length(Vvalidation)
|
||
display('Finished.');
|
||
%计算场强
|
||
ABCy=imag(repmat(innerMirrorPos,1,length(vrfPos)));
|
||
ABCx=real(repmat(innerMirrorPos,1,length(vrfPos)));
|
||
y=imag(conj(matVrfPos'));
|
||
x=real(conj(matVrfPos'));
|
||
ERy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||
EIy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||
ERx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||
EIx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||
E2=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2+((ERy.^2-EIy.^2+ERx.^2-EIx.^2).^2+4*(ERy.*EIy+ERx.*EIx).^2).^.5);
|
||
E3=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2);
|
||
Emat=1/pi/2./eslong.*repmat(conj(innerMirrorQ'),length(vrfPos),1)./(vrf2ConductorDistance.^2).*(matVrfPos-repmat(conj(innerMirrorPos'),length(vrfPos),1))./vrf2ConductorDistance;
|
||
E=sum(Emat,2);
|
||
max(sqrt(2)*abs(E));
|
||
scatter(real(innerMirrorPos(1:length(innerMirrorPos)/1)),imag(innerMirrorPos(1:length(innerMirrorPos)/1)),[],'r');
|
||
axis equal
|
||
hold on;
|
||
scatter(real(vrfPos),imag(vrfPos),[],'k'); |