parent
3a73dfd84e
commit
2ac1e54f69
|
|
@ -0,0 +1,114 @@
|
|||
clc
|
||||
clear
|
||||
%% 逐次镜像法
|
||||
% [1]. 付宾兰, 邵.A., 高压输电线路分裂导线表面和周围电场的计算. 电网技术, 1984(Z1): 第83-91页.
|
||||
% [2]. 韦钢与李海峰, 同杆并架多回线下方的电场强度和感应电压. 中国电力, 1999(03): 第39-42页.
|
||||
% 采用文献的结果: 蒋兴良, 胡.A.舒.A., Analysis of Conductors' Surface Electric Field of UHVDC Transmission Lines Based on Optimized Charge Simulation Method. 高电压技术, 2008(12): p. 2547-2551.
|
||||
%%
|
||||
%设置几个参数
|
||||
semi_lineDistance=450;%分裂间距
|
||||
semi_lineCount=6;%分裂数
|
||||
ConductorX=[-11000,11000];%导线间距
|
||||
ConductorY=[22000,22000,];%导线距地高度
|
||||
subconductorR=16.8;%子导线半径
|
||||
phaseN=2;%相数,单回三相
|
||||
%%
|
||||
eslong=8.854187817*10^-12*1000;
|
||||
%设置电压
|
||||
% Volt_=[1100/sqrt(3);1100/sqrt(3)*exp(1j*4/3*pi);1100/sqrt(3)*exp(1j*2/3*pi);];
|
||||
Volt_=[800;-800;];
|
||||
Volt=[];
|
||||
for vLoop=1:phaseN
|
||||
Volt=[Volt;Volt_(vLoop)*ones(semi_lineCount,1);];
|
||||
end
|
||||
%按分裂数和分裂导线间距布置单相线路导线
|
||||
%用极坐标
|
||||
arc=2*pi/semi_lineCount;
|
||||
%子导线中心到导线中心的距离
|
||||
R=semi_lineDistance/2/sin(arc/2);
|
||||
%计算导线互电位和自电位系数
|
||||
subconductorPos=[];
|
||||
for phaseLoop=1:phaseN
|
||||
for sC=1:semi_lineCount
|
||||
subconductorPos=[subconductorPos;ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+exp(1j*((sC-1)*arc+arc/2))*R];%移动到子导线中心
|
||||
%同时计算匹配点的位置
|
||||
% matchPos=[matchPos;simulationChargePos/r1*subconductorR+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+exp(1j*((sC-1)*arc+arc/2))*R];
|
||||
end
|
||||
end
|
||||
mirrorSubconductorPos=conj(subconductorPos);%获得子导线镜像
|
||||
H=diag(imag(subconductorPos));
|
||||
r=eye(length(H))*subconductorR;
|
||||
matSubconductor=repmat(subconductorPos,1,length(subconductorPos));
|
||||
conductor2conductorDistance=abs(matSubconductor-conj(matSubconductor'));
|
||||
% conductor2conductorDistance=conductor2conductorDistance-diag(diag(conductor2conductorDistance));
|
||||
conductor2MirrorDistance=abs(matSubconductor-repmat(conj(mirrorSubconductorPos'),length(subconductorPos),1));
|
||||
% conductor2MirrorDistance=conductor2MirrorDistance-diag(diag(conductor2MirrorDistance));
|
||||
P1=1/2/pi/eslong*log(2*H./r);
|
||||
P1(isnan(P1))=0;
|
||||
P2=1/2/pi/eslong*log(conductor2MirrorDistance./conductor2conductorDistance);
|
||||
P2(isinf(P2))=0;
|
||||
Pij=P1+P2;
|
||||
%求电荷
|
||||
QRI=Pij\Volt;
|
||||
% 计算镜像电荷
|
||||
%只计算同极性和同极性对地镜像的镜像
|
||||
innerMirrorPos=[];
|
||||
innerMirrorQ=[];%内部镜像的电荷
|
||||
for phaseLoop=1:phaseN
|
||||
for sCOuter=1:semi_lineCount
|
||||
for sCInner=1:semi_lineCount
|
||||
if sCInner==sCOuter
|
||||
innerMirrorPos=[innerMirrorPos;subconductorPos((phaseLoop-1)*semi_lineCount+sCOuter)];%先预留一个位置
|
||||
innerMirrorQ=[innerMirrorQ;sum(QRI(1+(phaseLoop-1)*semi_lineCount:phaseLoop*semi_lineCount))];
|
||||
continue
|
||||
end
|
||||
innerMirrorPos=[innerMirrorPos;subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount)+subconductorR^2/abs(subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount)-subconductorPos(sCInner+(phaseLoop-1)*semi_lineCount))*(subconductorPos(sCInner+(phaseLoop-1)*semi_lineCount)-subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount))./(abs(subconductorPos(sCInner+(phaseLoop-1)*semi_lineCount)-subconductorPos(sCOuter+(phaseLoop-1)*semi_lineCount)))];
|
||||
innerMirrorQ=[innerMirrorQ;-QRI(sCInner+(phaseLoop-1)*semi_lineCount)];
|
||||
end
|
||||
end
|
||||
end
|
||||
%选检验导线上一个角度
|
||||
vrfRelA=linspace(0,2*pi,200)';%vrf=verify
|
||||
%计算检验点相对于子导线的位置
|
||||
vrfRelPos=exp(1j*vrfRelA)*subconductorR;
|
||||
%移动坐标,使验证的子导线中心和实际子导线中心重合。
|
||||
vrfPos=[];
|
||||
for phaseLoop=1:phaseN
|
||||
for sC=1:semi_lineCount
|
||||
vrfPos=[vrfPos;exp(1j*((sC-1)*arc+arc/2))*R+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+vrfRelPos];
|
||||
end
|
||||
end
|
||||
%计算这一点的电位系数
|
||||
matVrfPos=repmat(vrfPos,1,length(innerMirrorPos));
|
||||
vrf2ConductorDistance=abs(matVrfPos-repmat(conj(innerMirrorPos'),length(vrfPos),1));
|
||||
vrf2MirrorDistance=abs(matVrfPos-repmat(conj(conj(innerMirrorPos')),length(vrfPos),1));
|
||||
Pij=1/2/pi/eslong*log(vrf2MirrorDistance./vrf2ConductorDistance);
|
||||
%计算电压
|
||||
V=Pij*innerMirrorQ;
|
||||
Vvalidation=[];
|
||||
for phaseLoop=1:phaseN
|
||||
Vvalidation=[Vvalidation;Volt_(phaseLoop)*ones(semi_lineCount*200,1);];
|
||||
end
|
||||
error=abs((V-Vvalidation)./Vvalidation);
|
||||
% error(isinf(error))=0;
|
||||
error=sum(error)/length(Vvalidation)
|
||||
%以下是验证部分
|
||||
display('Finished.');
|
||||
%计算场强
|
||||
ABCy=imag(repmat(innerMirrorPos,1,length(vrfPos)));
|
||||
ABCx=real(repmat(innerMirrorPos,1,length(vrfPos)));
|
||||
y=imag(conj(matVrfPos'));
|
||||
x=real(conj(matVrfPos'));
|
||||
ERy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
EIy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
ERx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
EIx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(innerMirrorQ),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
E2=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2+((ERy.^2-EIy.^2+ERx.^2-EIx.^2).^2+4*(ERy.*EIy+ERx.*EIx).^2).^.5);
|
||||
E3=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2);
|
||||
Emat=1/pi/2./eslong.*repmat(conj(innerMirrorQ'),length(vrfPos),1)./(vrf2ConductorDistance.^2).*(matVrfPos-repmat(conj(innerMirrorPos'),length(vrfPos),1))./vrf2ConductorDistance;
|
||||
E=sum(Emat,2);
|
||||
max(sqrt(2)*abs(E));
|
||||
scatter(real(innerMirrorPos(1:length(innerMirrorPos)/1)),imag(innerMirrorPos(1:length(innerMirrorPos)/1)),[],'r');
|
||||
axis equal
|
||||
hold on;
|
||||
scatter(real(vrfPos),imag(vrfPos),[],'k');
|
||||
|
|
@ -3,20 +3,22 @@ clear
|
|||
%% 自适应模拟电荷法
|
||||
% [1]. 任巍巍, 孙.A.宗.A., 一种较准确的分裂导线表面场强计算方法. 电网技术, 2006(04): 第92-96页.
|
||||
% [2]. 陈习文, 特高压直流输电线路电磁环境的研究, 2012, 北京交通大学.
|
||||
% 采用文献的结果: 蒋兴良, 胡.A.舒.A., Analysis of Conductors' Surface Electric Field of UHVDC Transmission Lines Based on Optimized Charge Simulation Method. 高电压技术, 2008(12): p. 2547-2551.
|
||||
%%
|
||||
%设置几个参数
|
||||
semi_lineDistance=457;%分裂间距
|
||||
semi_lineCount=4;%分裂数
|
||||
ConductorX=[-13720,0,13720];%导线距地高度
|
||||
ConductorY=[20830,20830,20830];%导线间距
|
||||
CSM_N=80;%每一个子导线的模拟电荷数
|
||||
subconductorR=29.95;%子导线半径
|
||||
phaseN=3;%相数,单回三相
|
||||
semi_lineDistance=450;%分裂间距
|
||||
semi_lineCount=6;%分裂数
|
||||
ConductorX=[-11000,11000];%导线间距
|
||||
ConductorY=[22000,22000,];%导线距地高度
|
||||
CSM_N=40;%每一个子导线的模拟电荷数
|
||||
subconductorR=16.8;%子导线半径
|
||||
phaseN=2;%相数,单回三相
|
||||
%%
|
||||
%设置电压
|
||||
Volt_=[765/sqrt(3);765/sqrt(3)*exp(1j*4/3*pi);765/sqrt(3)*exp(1j*2/3*pi);];
|
||||
% Volt_=[1100/sqrt(3);1100/sqrt(3)*exp(1j*4/3*pi);1100/sqrt(3)*exp(1j*2/3*pi);];
|
||||
Volt_=[800;-800;];
|
||||
Volt=[];
|
||||
for vLoop=1:length(Volt_)
|
||||
for vLoop=1:phaseN
|
||||
Volt=[Volt;Volt_(vLoop)*ones(CSM_N*semi_lineCount,1);];
|
||||
end
|
||||
%按分裂数和分裂导线间距布置单相线路导线
|
||||
|
|
@ -26,46 +28,47 @@ CSM_arc=2*pi/CSM_N;
|
|||
%子导线中心到导线中心的距离
|
||||
R=semi_lineDistance/2/sin(arc/2);
|
||||
%计算模拟电荷的位置
|
||||
r1=20;
|
||||
r1=5;
|
||||
error=10000;
|
||||
step=1/10;
|
||||
maxLoop=round((subconductorR-r1)/step);
|
||||
for Loop=1:maxLoop;
|
||||
simulationChargePos=ones(CSM_N,1);
|
||||
simulationChargeABCPos=[];
|
||||
matchPos=[];
|
||||
for I=1:CSM_N
|
||||
simulationChargePos(I)=exp(1j*((I-1)*CSM_arc+CSM_arc/2))*r1;%逆时针转一个角度
|
||||
end
|
||||
for phaseLoop=1:phaseN
|
||||
for sC=1:semi_lineCount
|
||||
simulationChargeABCPos=[simulationChargeABCPos;simulationChargePos+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+exp(1j*((sC-1)*arc+arc/2))*R];%移动到子导线中心
|
||||
%同时计算匹配点的位置
|
||||
matchPos=[matchPos;simulationChargePos/r1*subconductorR+ConductorX(phaseLoop)+1j*ConductorY(phaseLoop)+exp(1j*((sC-1)*arc+arc/2))*R];
|
||||
end
|
||||
end
|
||||
% simulationChargeAPos=simulationChargePos+ConductorX(1)+1j*ConductorY(1);
|
||||
% simulationChargeBPos=simulationChargePos+ConductorX(2)+1j*ConductorY(2);
|
||||
% simulationChargePos=simulationChargeABCPos;
|
||||
%计算电位系数
|
||||
H=diag(imag(simulationChargeABCPos));
|
||||
r=subconductorR*eye(length(imag(simulationChargeABCPos)));%导线自几何均距
|
||||
% H=diag(imag(simulationChargeABCPos));
|
||||
% r=subconductorR*eye(length(imag(simulationChargeABCPos)));%导线自几何均距
|
||||
%导线与导线的距离
|
||||
matSimulationChargePos=repmat(simulationChargeABCPos,1,length(simulationChargeABCPos));
|
||||
conductor2conductorDistance=matSimulationChargePos-conj(matSimulationChargePos');
|
||||
conductor2conductorDistance=abs(conductor2conductorDistance-diag(diag(conductor2conductorDistance)));
|
||||
matMatchPos=repmat(conj(matchPos'),length(simulationChargeABCPos),1);
|
||||
CMS2MatchPointDistance=abs(matSimulationChargePos-matMatchPos);
|
||||
% conductor2conductorDistance=abs(conductor2conductorDistance-diag(diag(conductor2conductorDistance)));
|
||||
matMirrorChargePos=conj(matSimulationChargePos);%虚部取负号
|
||||
conductor2MirrorDistance=matSimulationChargePos-conj(matMirrorChargePos');
|
||||
conductor2MirrorDistance=abs(conductor2MirrorDistance-diag(diag(conductor2MirrorDistance)));
|
||||
eslong=8.854187817*10;
|
||||
P1=1/2/pi/eslong*log(2*H./r);
|
||||
P1(isnan(P1))=0;
|
||||
P2=1/2/pi/eslong*log(conductor2MirrorDistance./conductor2conductorDistance);
|
||||
P2(isnan(P2))=0;
|
||||
P=P1+P2;
|
||||
mirrorCharge2MatchPointDistance=abs(matMirrorChargePos-matMatchPos);
|
||||
% conductor2MirrorDistance=abs(conductor2MirrorDistance-diag(diag(conductor2MirrorDistance)));
|
||||
eslong=8.854187817*10^-12*1000;
|
||||
% P1=1/2/pi/eslong*log(2*H./r);
|
||||
% P1(isnan(P1))=0;
|
||||
P2=1/2/pi/eslong*log(mirrorCharge2MatchPointDistance./CMS2MatchPointDistance);
|
||||
% P2(isnan(P2))=0;
|
||||
% P=P1+P2;
|
||||
P=P2;
|
||||
%求电荷
|
||||
QRI=P\Volt;
|
||||
%以下是验证部分
|
||||
if error<0.0001
|
||||
break;
|
||||
end
|
||||
%选检验导线上一个角度
|
||||
vrfRelA=linspace(0,2*pi,200)';%vrf=verify
|
||||
%计算检验点相对于子导线的位置
|
||||
|
|
@ -88,8 +91,14 @@ for Loop=1:maxLoop;
|
|||
for phaseLoop=1:phaseN
|
||||
Vvalidation=[Vvalidation;Volt_(phaseLoop)*ones(semi_lineCount*200,1);];
|
||||
end
|
||||
error=sum(abs((V-Vvalidation)./Vvalidation))/length(Vvalidation);
|
||||
r1=r1+step;
|
||||
error=abs((V-Vvalidation)./Vvalidation);
|
||||
% error(isinf(error))=0;
|
||||
error=sum(error)/length(Vvalidation)
|
||||
%以下是验证部分
|
||||
if error<0.001
|
||||
break;
|
||||
end
|
||||
r1=r1+1*step;
|
||||
end
|
||||
display('Finished.');
|
||||
if Loop<maxLoop
|
||||
|
|
@ -101,12 +110,18 @@ ABCy=imag(repmat(simulationChargeABCPos,1,length(vrfPos)));
|
|||
ABCx=real(repmat(simulationChargeABCPos,1,length(vrfPos)));
|
||||
y=imag(conj(matVrfPos'));
|
||||
x=real(conj(matVrfPos'));
|
||||
ERy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )+(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
EIy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )+(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
ERx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )+(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
EIx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )+(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
E=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2);
|
||||
max(E);
|
||||
ERy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
EIy=sum( ( (ABCy-y)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCy+y)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
ERx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(real(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
EIx=sum( ( (ABCx-x)./( (ABCy-y).^2+(ABCx-x).^2 )-(ABCx-x)./( (ABCy+y).^2+(ABCx-x).^2 ) ).*repmat(imag(QRI),1,length(vrfPos))./2/pi/eslong,1 );
|
||||
E2=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2+((ERy.^2-EIy.^2+ERx.^2-EIx.^2).^2+4*(ERy.*EIy+ERx.*EIx).^2).^.5);
|
||||
E3=sqrt(ERy.^2+EIy.^2+ERx.^2+EIx.^2);
|
||||
Emat=1/pi/2./eslong.*repmat(conj(QRI'),length(vrfPos),1)./(vrf2ConductorDistance.^2).*(matVrfPos-repmat(conj(simulationChargeABCPos'),length(vrfPos),1))./vrf2ConductorDistance;
|
||||
E=sum(Emat,2);
|
||||
|
||||
|
||||
|
||||
max(sqrt(2)*abs(E));
|
||||
|
||||
scatter(real(simulationChargeABCPos(1:length(simulationChargeABCPos)/1)),imag(simulationChargeABCPos(1:length(simulationChargeABCPos)/1)),[],'r');
|
||||
axis equal
|
||||
|
|
|
|||
Loading…
Reference in New Issue