77 lines
2.3 KiB
Mathematica
77 lines
2.3 KiB
Mathematica
|
|
function [Jacob]=jacobian_M4(Busnum,Volt,Y,Angle,AngleIJMat)
|
|||
|
|
%**************************************************************************
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> : <EFBFBD>Ӻ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>γ<EFBFBD><EFBFBD>ſɱȾ<EFBFBD><EFBFBD><EFBFBD>Jacobian
|
|||
|
|
% <EFBFBD><EFBFBD> <EFBFBD>ߣ<EFBFBD>
|
|||
|
|
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD>䣺2010.12
|
|||
|
|
%**************************************************************************
|
|||
|
|
%% <EFBFBD>ֱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſ˱Ⱦ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>H,L,N,J<EFBFBD><EFBFBD><EFBFBD>й<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>P,Q
|
|||
|
|
temp1=Volt'*Volt.*Y;
|
|||
|
|
AngleIJ=AngleIJMat-Angle;
|
|||
|
|
tt1=temp1.*sin(AngleIJ);
|
|||
|
|
tt2=temp1.*cos(AngleIJ);
|
|||
|
|
tt3=diag(tt1);
|
|||
|
|
tt4=diag(tt2);
|
|||
|
|
tt5=tt1-diag(tt3);
|
|||
|
|
tt6=tt2-diag(tt4);
|
|||
|
|
temp2=sum(tt5,2);
|
|||
|
|
temp3 = sum(tt6,2);
|
|||
|
|
HH=temp2;
|
|||
|
|
JJ=-temp3;
|
|||
|
|
t1=ones(Busnum,1)*Volt.*Y;
|
|||
|
|
t11=Volt'*ones(1,Busnum).*Y;
|
|||
|
|
t2=sum(t1.*sin(AngleIJ),2);
|
|||
|
|
t3=sum(t1.*cos(AngleIJ),2);
|
|||
|
|
t4=diag(t1.*sin(AngleIJ));
|
|||
|
|
t5=diag(t1.*cos(AngleIJ));
|
|||
|
|
NN=-diag(t3)-diag(t5);
|
|||
|
|
LL=-diag(t2)+diag(t4);
|
|||
|
|
H = -temp1.*sin(AngleIJ);
|
|||
|
|
L = -t11.*sin(AngleIJ);%
|
|||
|
|
N=-t11.*cos(AngleIJ);%
|
|||
|
|
J = temp1.*cos(AngleIJ);%
|
|||
|
|
H=H-diag(diag(H));
|
|||
|
|
N=N-diag(diag(N));
|
|||
|
|
J=J-diag(diag(J));
|
|||
|
|
L=L-diag(diag(L));
|
|||
|
|
H=H+diag(HH);
|
|||
|
|
N=N+NN;
|
|||
|
|
J=J+diag(JJ);
|
|||
|
|
L=L+LL;
|
|||
|
|
|
|||
|
|
|
|||
|
|
t1=zeros(2*Busnum);
|
|||
|
|
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
|||
|
|
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
|||
|
|
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
|||
|
|
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
|||
|
|
Jacob=t1;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
|
|||
|
|
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
|||
|
|
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
|||
|
|
% U(PVi) = PVu;
|
|||
|
|
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſ˱Ⱦ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><EFBFBD>м<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
|||
|
|
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
|||
|
|
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
|||
|
|
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
|||
|
|
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
|||
|
|
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
|||
|
|
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
|||
|
|
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
|||
|
|
%
|
|||
|
|
%
|
|||
|
|
% t1=zeros(2*Busnum);
|
|||
|
|
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
|||
|
|
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
|||
|
|
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
|||
|
|
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
|||
|
|
% % t1(1:)
|
|||
|
|
% % PQ = cat(2,P,Q); % <EFBFBD>γɹ<EFBFBD><EFBFBD>ʲ<EFBFBD>ƽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % <EFBFBD>γ<EFBFBD>Jacobian<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
% Jacob=t1;
|
|||
|
|
%
|
|||
|
|
% end
|