pes2014/@ForThesis/StatBranchDeviation.m

20 lines
947 B
Mathematica
Raw Normal View History

function [ output_args ] = StatBranchDeviation( ~, Linei,Linej,Liner,Linex,Lineb,Transfori,Transforj,Transforr,Transforx,Branchi,Branchg,Branchb,Transfork0,Volt0,UAngel0,Volt,UAngel )
%STATBRANCHDEVIATION Summary of this function goes here
% Detailed explanation goes here
%% ֧·<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͳ<EFBFBD><EFBFBD>ƫ<EFBFBD><EFBFBD> L2 <EFBFBD><EFBFBD><EFBFBD><EFBFBD>
% ֧·<EFBFBD><EFBFBD><EFBFBD>ʰ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>·<EFBFBD>ͱ<EFBFBD>ѹ<EFBFBD><EFBFBD>
%%
[dispLineloss0 dispTransloss0]=Lineloss(Linei,Linej,Liner,Linex,Lineb,Transfori,Transforj,Transforr,Transforx,Branchi,Branchg,Branchb,Transfork0,Volt0,UAngel0);
[dispLineloss dispTransloss]=Lineloss(Linei,Linej,Liner,Linex,Lineb,Transfori,Transforj,Transforr,Transforx,Branchi,Branchg,Branchb,Transfork0,Volt,UAngel);
t1=(dispLineloss0(:,3) - dispLineloss(:,3))./dispLineloss0(:,3);
t2=(dispTransloss0(:,3) - dispTransloss(:,3))./dispTransloss0(:,3);
t11=dispLineloss0(:,3)>1e-5;% ̫С<EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
t22=dispTransloss0(:,3)>1e-5;% ̫С<EFBFBD><EFBFBD>ֵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
t3=[t1(t11);t2(t22)];
t4=t3.^2;
t5=sum(t4).^.5;
output_args=t5;
end