36 lines
712 B
Mathematica
36 lines
712 B
Mathematica
|
|
clc
|
|||
|
|
clear
|
|||
|
|
close all
|
|||
|
|
%<EFBFBD><EFBFBD><EFBFBD>γɳ<EFBFBD>ʼ<EFBFBD><EFBFBD>
|
|||
|
|
center=[1,1,1,1,1;10,10,10,10,10;100,100,100,100,100;1000,1000,1000,1000,1000];
|
|||
|
|
dataN=100;% <EFBFBD><EFBFBD><EFBFBD>ɶ<EFBFBD><EFBFBD>ٸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
data=zeros(5,dataN);
|
|||
|
|
for I=1:dataN
|
|||
|
|
i=round(1+(5-1)*rand());
|
|||
|
|
data(:,I)=center(i)*( -1+(1+1)*rand(5,1));
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%ѡһ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ѡ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
cddtI=10;
|
|||
|
|
SetS=[];
|
|||
|
|
SetS=[SetS;cddtI;];
|
|||
|
|
Cij=0;
|
|||
|
|
for I=1:dataN
|
|||
|
|
if I==cddtI
|
|||
|
|
continue
|
|||
|
|
end
|
|||
|
|
d=data(:,I);
|
|||
|
|
%Ѱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̾<EFBFBD><EFBFBD><EFBFBD>
|
|||
|
|
minD=1e20;
|
|||
|
|
for J=1:length(SetS)
|
|||
|
|
if I==SetS(J)
|
|||
|
|
continue
|
|||
|
|
end
|
|||
|
|
distance=sum((d-data(:,SetS(J))).^2).^.5;
|
|||
|
|
if distance<minD
|
|||
|
|
minD=distance;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
distanceIJ=sum((d-data(:,cddtI)).^2).^.5;
|
|||
|
|
Cij=Cij+max([minD-distanceIJ,0])
|
|||
|
|
end
|