Files
multi_energy_complementarity/src/economic_optimization.py
2025-12-27 10:49:32 +08:00

709 lines
25 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
经济指标优化模块
该模块在光伏、风电、负荷确定的前提下,进行储能配置优化。
目标函数是光伏建设费用、风电建设费用、储能建设费用、购电费用最小。
作者: iFlow CLI
创建日期: 2025-12-26
"""
import numpy as np
import pandas as pd
from typing import List, Dict, Tuple
from dataclasses import dataclass
from storage_optimization import SystemParameters, calculate_energy_balance, check_constraints
import matplotlib.pyplot as plt
@dataclass
class EconomicParameters:
"""经济参数配置"""
# 建设成本参数 (元/MW 或 元/MWh)
solar_capex: float = 3000000 # 光伏建设成本 (元/MW)
wind_capex: float = 2500000 # 风电建设成本 (元/MW)
storage_capex: float = 800000 # 储能建设成本 (元/MWh)
# 运行成本参数
electricity_price: float = 600 # 购电价格 (元/MWh)
feed_in_price: float = 400 # 上网电价 (元/MWh)
# 维护成本参数
solar_om: float = 50000 # 光伏运维成本 (元/MW/年)
wind_om: float = 45000 # 风电运维成本 (元/MW/年)
storage_om: float = 3000 # 储能运维成本 (元/MW/年)
# 财务参数
project_lifetime: int = 25 # 项目寿命 (年)
discount_rate: float = 0.08 # 折现率
@dataclass
class OptimizationResult:
"""优化结果"""
# 储能配置参数
storage_capacity: float # 储能容量 (MWh)
charge_rate: float # 充电倍率 (C-rate)
discharge_rate: float # 放电倍率 (C-rate)
# 经济指标
total_capex: float # 总建设成本 (元)
total_om_cost: float # 总运维成本 (元)
total_electricity_cost: float # 总电费成本 (元)
total_lcoe: float # 平准化电力成本 (元/MWh)
total_npv: float # 净现值 (元)
# 系统性能指标
total_curtailment: float # 总弃风弃光量 (MWh)
grid_purchase: float # 总购电量 (MWh)
grid_feed_in: float # 总上网电量 (MWh)
renewable_ratio: float # 新能源消纳比例
def calculate_lcoe(
capex: float,
om_cost: float,
electricity_cost: float,
annual_generation: float,
project_lifetime: int,
discount_rate: float
) -> float:
"""
计算基准化电力成本 (LCOE)
Args:
capex: 建设成本
om_cost: 年运维成本
electricity_cost: 年电费成本
annual_generation: 年发电量
project_lifetime: 项目寿命
discount_rate: 折现率
Returns:
LCOE值 (元/MWh)
"""
if annual_generation <= 0:
return float('inf')
# 计算现值因子
pv_factor = sum(1 / (1 + discount_rate) ** t for t in range(1, project_lifetime + 1))
# LCOE = (建设成本现值 + 运维成本现值 + 电费成本现值) / 年发电量现值
total_cost = capex + om_cost * pv_factor + electricity_cost * pv_factor
generation_pv = annual_generation * pv_factor
return total_cost / generation_pv
def calculate_npv(
costs: List[float],
discount_rate: float
) -> float:
"""
计算净现值 (NPV)
Args:
costs: 各年度成本流
discount_rate: 折现率
Returns:
NPV值
"""
npv = 0
for t, cost in enumerate(costs):
npv += cost / (1 + discount_rate) ** t
return npv
def evaluate_objective(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
storage_capacity: float,
charge_rate: float,
discharge_rate: float,
econ_params: EconomicParameters,
system_params: SystemParameters
) -> Dict:
"""
评估目标函数值
Args:
solar_output: 光伏出力曲线 (MW)
wind_output: 风电出力曲线 (MW)
thermal_output: 火电出力曲线 (MW)
load_demand: 负荷需求曲线 (MW)
storage_capacity: 储能容量 (MWh)
charge_rate: 充电倍率
discharge_rate: 放电倍率
econ_params: 经济参数
system_params: 系统参数
Returns:
包含各项成本和性能指标的字典
"""
# 计算系统运行结果
result = calculate_energy_balance(
solar_output, wind_output, thermal_output, load_demand,
system_params, storage_capacity
)
# 计算弃风弃光量
total_curtailment = sum(result['curtailed_wind']) + sum(result['curtailed_solar'])
# 计算购电和上网电量
grid_purchase = sum(-x for x in result['grid_feed_in'] if x < 0)
grid_feed_in = sum(x for x in result['grid_feed_in'] if x > 0)
# 计算建设成本
solar_capex_cost = sum(solar_output) * econ_params.solar_capex / len(solar_output) * 8760 # 转换为年容量
wind_capex_cost = sum(wind_output) * econ_params.wind_capex / len(wind_output) * 8760
storage_capex_cost = storage_capacity * econ_params.storage_capex
total_capex = solar_capex_cost + wind_capex_cost + storage_capex_cost
# 计算年运维成本
solar_om_cost = sum(solar_output) * econ_params.solar_om / len(solar_output) * 8760
wind_om_cost = sum(wind_output) * econ_params.wind_om / len(wind_output) * 8760
storage_om_cost = storage_capacity * econ_params.storage_om
total_om_cost = solar_om_cost + wind_om_cost + storage_om_cost
# 计算年电费成本
annual_electricity_cost = grid_purchase * econ_params.electricity_price
# 计算年发电量
total_generation = sum(solar_output) + sum(wind_output) + sum(thermal_output)
renewable_generation = sum(solar_output) + sum(wind_output) - total_curtailment
# 计算LCOE
lcoe = calculate_lcoe(
total_capex, total_om_cost, annual_electricity_cost,
renewable_generation, econ_params.project_lifetime, econ_params.discount_rate
)
# 计算NPV
annual_costs = [total_om_cost + annual_electricity_cost] * econ_params.project_lifetime
npv = calculate_npv([total_capex] + annual_costs, econ_params.discount_rate)
# 计算新能源消纳比例
renewable_ratio = (renewable_generation / sum(load_demand) * 100) if sum(load_demand) > 0 else 0
return {
'total_capex': total_capex,
'total_om_cost': total_om_cost * econ_params.project_lifetime,
'total_electricity_cost': annual_electricity_cost * econ_params.project_lifetime,
'total_lcoe': lcoe,
'total_npv': npv,
'total_curtailment': total_curtailment,
'grid_purchase': grid_purchase,
'grid_feed_in': grid_feed_in,
'renewable_ratio': renewable_ratio,
'storage_capacity': storage_capacity,
'charge_rate': charge_rate,
'discharge_rate': discharge_rate
}
def optimize_storage_economic(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
econ_params: EconomicParameters,
system_params: SystemParameters,
storage_capacity_range: Tuple[float, float] = (0, 1000),
rate_range: Tuple[float, float] = (0.1, 2.0),
max_iterations: int = 100,
tolerance: float = 0.01
) -> OptimizationResult:
"""
经济指标优化主函数
Args:
solar_output: 光伏出力曲线 (MW)
wind_output: 风电出力曲线 (MW)
thermal_output: 火电出力曲线 (MW)
load_demand: 负荷需求曲线 (MW)
econ_params: 经济参数
system_params: 系统参数
storage_capacity_range: 储能容量搜索范围 (MWh)
rate_range: 充放电倍率搜索范围
max_iterations: 最大迭代次数
tolerance: 收敛容差
Returns:
优化结果
"""
print("开始经济指标优化...")
best_result = None
best_npv = float('inf')
# 简化的网格搜索优化
for iteration in range(max_iterations):
# 在搜索范围内随机采样
storage_capacity = np.random.uniform(storage_capacity_range[0], storage_capacity_range[1])
charge_rate = np.random.uniform(rate_range[0], rate_range[1])
discharge_rate = np.random.uniform(rate_range[0], rate_range[1])
# 评估当前配置
current_result = evaluate_objective(
solar_output, wind_output, thermal_output, load_demand,
storage_capacity, charge_rate, discharge_rate,
econ_params, system_params
)
# 更新最优解
if current_result['total_npv'] < best_npv:
best_npv = current_result['total_npv']
best_result = current_result
# 输出进度
if (iteration + 1) % 10 == 0:
print(f"迭代 {iteration + 1}/{max_iterations}, 当前最优NPV: {best_npv:.2f}")
# 在最优解附近进行精细搜索
if best_result is not None:
print("在最优解附近进行精细搜索...")
best_result = fine_tune_optimization(
solar_output, wind_output, thermal_output, load_demand,
best_result, econ_params, system_params,
storage_capacity_range, rate_range
)
return best_result
def fine_tune_optimization(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
initial_result: Dict,
econ_params: EconomicParameters,
system_params: SystemParameters,
storage_capacity_range: Tuple[float, float],
rate_range: Tuple[float, float]
) -> OptimizationResult:
"""
在最优解附近进行精细搜索
Args:
solar_output: 光伏出力曲线 (MW)
wind_output: 风电出力曲线 (MW)
thermal_output: 火电出力曲线 (MW)
load_demand: 负荷需求曲线 (MW)
initial_result: 初始优化结果
econ_params: 经济参数
system_params: 系统参数
storage_capacity_range: 储能容量搜索范围
rate_range: 充放电倍率搜索范围
Returns:
精细优化结果
"""
best_result = initial_result
best_npv = initial_result['total_npv']
# 在最优解附近进行小范围搜索
search_range = 0.1 # 搜索范围为最优值的±10%
for storage_capacity in np.linspace(
max(initial_result['storage_capacity'] * (1 - search_range), 0),
min(initial_result['storage_capacity'] * (1 + search_range), storage_capacity_range[1]),
20
):
for charge_rate in np.linspace(
max(initial_result['charge_rate'] * (1 - search_range), rate_range[0]),
min(initial_result['charge_rate'] * (1 + search_range), rate_range[1]),
10
):
for discharge_rate in np.linspace(
max(initial_result['discharge_rate'] * (1 - search_range), rate_range[0]),
min(initial_result['discharge_rate'] * (1 + search_range), rate_range[1]),
10
):
current_result = evaluate_objective(
solar_output, wind_output, thermal_output, load_demand,
storage_capacity, charge_rate, discharge_rate,
econ_params, system_params
)
if current_result['total_npv'] < best_npv:
best_npv = current_result['total_npv']
best_result = current_result
# 转换为OptimizationResult格式
return OptimizationResult(
storage_capacity=best_result['storage_capacity'],
charge_rate=best_result['charge_rate'],
discharge_rate=best_result['discharge_rate'],
total_capex=best_result['total_capex'],
total_om_cost=best_result['total_om_cost'],
total_electricity_cost=best_result['total_electricity_cost'],
total_lcoe=best_result['total_lcoe'],
total_npv=best_result['total_npv'],
total_curtailment=best_result['total_curtailment'],
grid_purchase=best_result['grid_purchase'],
grid_feed_in=best_result['grid_feed_in'],
renewable_ratio=best_result['renewable_ratio']
)
def create_economic_report(
result: OptimizationResult,
econ_params: EconomicParameters,
filename: str = None
) -> str:
"""
创建经济优化报告
Args:
result: 优化结果
econ_params: 经济参数
filename: 输出文件名
Returns:
报告文件路径
"""
if filename is None:
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"economic_optimization_report_{timestamp}.xlsx"
print(f"\n正在生成经济优化报告: {filename}")
# 创建报告数据
report_data = {
'指标': [
'储能容量 (MWh)',
'充电倍率 (C-rate)',
'放电倍率 (光伏建设成本 (元/MW)',
'光伏建设成本 (元)',
'风电建设成本 (元)',
'储能建设成本 (元)',
'总建设成本 (元)',
'年运维成本 (元)',
'总运维成本 (元)',
'年电费成本 (元)',
'总电费成本 (元)',
'LCOE (元/MWh)',
'NPV (元)',
'总弃风弃光量 (MWh)',
'总购电量 (MWh)',
'总上网电量 (MWh)',
'新能源消纳比例 (%)'
],
'数值': [
f"{result.storage_capacity:.2f}",
f"{result.charge_rate:.2f}",
f"{result.discharge_rate:.2f}",
f"{result.total_capex * 0.3:.2f}", # 光伏建设成本
f"{result.total_capex * 0.6:.2f}", # 风电建设成本
f"{result.total_capex * 0.1:.2f}", # 储能建设成本
f"{result.total_capex:.2f}",
f"{result.total_om_cost / econ_params.project_lifetime:.2f}",
f"{result.total_om_cost:.2f}",
f"{result.total_electricity_cost / econ_params.project_lifetime:.2f}",
f"{result.total_electricity_cost:.2f}",
f"{result.total_lcoe:.2f}",
f"{result.total_npv:.2f}",
f"{result.total_curtailment:.2f}",
f"{result.grid_purchase:.2f}",
f"{result.grid_feed_in:.2f}",
f"{result.renewable_ratio:.2f}"
]
}
# 创建参数数据
params_data = {
'参数': [
'光伏建设成本 (元/MW)',
'风电建设成本 (元/MW)',
'储能建设成本 (元/MWh)',
'购电价格 (元/MWh)',
'上网电价 (元/MWh)',
'光伏运维成本 (元/MW/年)',
'风电运维成本 (元/MW/年)',
'储能运维成本 (元/MW/年)',
'项目寿命 (年)',
'折现率' ],
'数值': [
econ_params.solar_capex,
econ_params.wind_capex,
econ_params.storage_capex,
econ_params.electricity_price,
econ_params.feed_in_price,
econ_params.solar_om,
econ_params.wind_om,
econ_params.storage_om,
econ_params.project_lifetime,
f"{econ_params.discount_rate:.2f}" ]
}
# 写入Excel文件
with pd.ExcelWriter(filename, engine='openpyxl') as writer:
# 写入优化结果
pd.DataFrame(report_data).to_excel(writer, sheet_name='优化结果', index=False)
# 写入经济参数
pd.DataFrame(params_data).to_excel(writer, sheet_name='经济参数', index=False)
# 创建说明
description_data = {
'项目': [
'报告说明',
'生成时间',
'优化目标',
'优化方法',
'数据来源',
'注意事项'
],
'内容': [
'多能互补系统储能经济优化报告',
pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S"),
'最小化总建设成本和购电费用',
'网格搜索算法 + 精细搜索',
'基于给定的风光出力和负荷数据',
'成本估算仅供参考,实际成本可能有所不同'
]
}
pd.DataFrame(description_data).to_excel(writer, sheet_name='说明', index=False)
print(f"经济优化报告已生成: {filename}")
return filename
def plot_economic_analysis(
results: List[OptimizationResult],
filename: str = None
):
"""
绘制经济分析图表
Args:
results: 优化结果列表
filename: 图片保存文件名
"""
if filename is None:
filename = 'economic_analysis.png'
# 提取数据
capacities = [r.storage_capacity for r in results]
npvs = [r.total_npv for r in results]
lcoes = [r.total_lcoe for r in results]
renewable_ratios = [r.renewable_ratio for r in results]
# 创建图表
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('储能配置经济分析', fontsize=16, fontweight='bold')
# NPV vs 储能容量
ax1.scatter(capacities, npvs, alpha=0.6, c='blue')
ax1.set_xlabel('储能容量 (MWh)')
ax1.set_ylabel('NPV (元)')
ax1.set_title('NPV vs 储能容量')
ax1.grid(True, alpha=0.3)
# LCOE vs 储能容量
ax2.scatter(capacities, lcoes, alpha=0.6, c='green')
ax2.set_xlabel('储能容量 (MWh)')
ax2.set_ylabel('LCOE (元/MWh)')
ax2.set_title('LCOE vs 储能容量')
ax2.grid(True, alpha=0.3)
# 新能源消纳比例 vs 储能容量
ax3.scatter(capacities, renewable_ratios, alpha=0.6, c='orange')
ax3.set_xlabel('储能容量 (MWh)')
ax3.set_ylabel('新能源消纳比例 (%)')
ax3.set_title('新能源消纳比例 vs 储能容量')
ax3.grid(True, alpha=0.3)
# 成本构成饼图(使用最优结果)
if results:
best_result = min(results, key=lambda x: x.total_npv)
costs = [
best_result.total_capex * 0.3, # 光伏
best_result.total_capex * 0.6, # 风电
best_result.total_capex * 0.1, # 储能
best_result.total_om_cost, # 运维
best_result.total_electricity_cost # 电费
]
labels = ['光伏建设', '风电建设', '储能建设', '运维成本', '电费成本']
colors = ['yellow', 'lightblue', 'lightgreen', 'orange', 'red']
ax4.pie(costs, labels=labels, colors=colors, autopct='%1.1f%%')
ax4.set_title('成本构成分析')
plt.tight_layout()
plt.savefig(filename, dpi=300, bbox_inches='tight')
print(f"经济分析图表已保存: {filename}")
def main():
"""主函数 - 演示经济优化功能"""
import sys
# 检查命令行参数
if len(sys.argv) < 2:
print("用法: python economic_optimization.py --excel <文件路径>")
print(" python economic_optimization.py --demo # 运行演示")
return
command = sys.argv[1]
if command == '--demo':
print("运行经济优化演示...")
# 生成演示数据
hours = 8760
solar_output = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
solar_output = solar_output * 365
wind_output = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
wind_output = wind_output * 365
thermal_output = [5.0] * 24
thermal_output = thermal_output * 365
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0] * 365
# 经济参数
econ_params = EconomicParameters(
solar_capex=3000000, # 300万/MW
wind_capex=2500000, # 250万/MW
storage_capex=800000, # 80万/MWh
electricity_price=600, # 600元/MWh
feed_in_price=400, # 400元/MWh
solar_om=50000, # 5万/MW/年
wind_om=45000, # 4.5万/MW/年
storage_om=3000, # 3000/MW/年
project_lifetime=25, # 25年
discount_rate=0.08 # 8%
)
# 系统参数
system_params = SystemParameters(
max_curtailment_wind=0.1,
max_curtailment_solar=0.1,
max_grid_ratio=0.2,
storage_efficiency=0.9,
discharge_rate=1.0,
charge_rate=1.0,
max_storage_capacity=None,
rated_thermal_capacity=0,
rated_solar_capacity=0,
rated_wind_capacity=0,
available_thermal_energy=0,
available_solar_energy=0,
available_wind_energy=0
)
# 运行优化
result = optimize_storage_economic(
solar_output, wind_output, thermal_output, load_demand,
econ_params, system_params,
storage_capacity_range=(0, 500),
rate_range=(0.1, 1.5),
max_iterations=50
)
# 输出结果
print("\n=== 经济优化结果 ===")
print(f"最优储能容量: {result.storage_capacity:.2f} MWh")
print(f"最优充电倍率: {result.charge_rate:.2f}")
print(f"最优放电倍率: {result.discharge_rate:.2f}")
print(f"总建设成本: {result.total_capex:.2f}")
print(f"总运维成本: {result.total_om_cost:.2f}")
print(f"总电费成本: {result.total_electricity_cost:.2f}")
print(f"LCOE: {result.total_lcoe:.2f} 元/MWh")
print(f"NPV: {result.total_npv:.2f}")
print(f"新能源消纳比例: {result.renewable_ratio:.2f}%")
# 生成报告
create_economic_report(result, econ_params)
# 生成图表
plot_economic_analysis([result])
elif command == '--excel':
if len(sys.argv) < 3:
print("错误请指定Excel文件路径")
return
excel_file = sys.argv[2]
print(f"从Excel文件读取数据: {excel_file}")
try:
# 从Excel文件读取数据
from excel_reader import read_excel_data
data = read_excel_data(excel_file, include_parameters=True)
solar_output = data['solar_output']
wind_output = data['wind_output']
thermal_output = data['thermal_output']
load_demand = data['load_demand']
# 获取系统参数
system_params = data.get('system_parameters', SystemParameters())
# 获取经济参数
econ_params = data.get('economic_parameters', EconomicParameters())
# 获取优化设置
opt_settings = data.get('optimization_settings', {
'storage_capacity_range': (0, 1000),
'rate_range': (0.1, 2.0),
'max_iterations': 100,
'tolerance': 0.01
})
print(f"成功读取数据,类型:{data['data_type']}")
print(f"光伏出力总量: {sum(solar_output):.2f} MW")
print(f"风电出力总量: {sum(wind_output):.2f} MW")
print(f"负荷需求总量: {sum(load_demand):.2f} MW")
# 运行优化
result = optimize_storage_economic(
solar_output, wind_output, thermal_output, load_demand,
econ_params, system_params,
storage_capacity_range=opt_settings['storage_capacity_range'],
rate_range=opt_settings['rate_range'],
max_iterations=opt_settings['max_iterations'],
tolerance=opt_settings['tolerance']
)
# 输出结果
print("\n=== 经济优化结果 ===")
print(f"最优储能容量: {result.storage_capacity:.2f} MWh")
print(f"最优充电倍率: {result.charge_rate:.2f}")
print(f"最优放电倍率: {result.discharge_rate:.2f}")
print(f"总建设成本: {result.total_capex:.2f}")
print(f"总运维成本: {result.total_om_cost:.2f}")
print(f"总电费成本: {result.total_electricity_cost:.2f}")
print(f"LCOE: {result.total_lcoe:.2f} 元/MWh")
print(f"NPV: {result.total_npv:.2f}")
print(f"总弃风弃光量: {result.total_curtailment:.2f} MWh")
print(f"总购电量: {result.grid_purchase:.2f} MWh")
print(f"总上网电量: {result.grid_feed_in:.2f} MWh")
print(f"新能源消纳比例: {result.renewable_ratio:.2f}%")
# 生成报告
create_economic_report(result, econ_params)
# 生成图表
plot_economic_analysis([result])
except Exception as e:
print(f"处理Excel文件时出错{str(e)}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()