完成基本功能。

This commit is contained in:
dmy
2025-12-25 18:06:12 +08:00
commit bab6b90694
6 changed files with 1485 additions and 0 deletions

202
main.py Normal file
View File

@@ -0,0 +1,202 @@
"""
多能互补系统储能容量优化可视化程序
该程序绘制负荷曲线、发电曲线和储能出力曲线,直观展示系统运行状态。
作者: iFlow CLI
创建日期: 2025-12-25
"""
import matplotlib.pyplot as plt
import numpy as np
from storage_optimization import optimize_storage_capacity, SystemParameters
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False
def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, result):
"""
绘制系统运行曲线
Args:
solar_output: 光伏出力曲线 (MW) - 支持24小时或8760小时
wind_output: 风电出力曲线 (MW) - 支持24小时或8760小时
thermal_output: 火电出力曲线 (MW) - 支持24小时或8760小时
load_demand: 负荷曲线 (MW) - 支持24小时或8760小时
result: 优化结果字典
"""
hours = np.arange(len(solar_output))
data_length = len(solar_output)
# 确定图表标题和采样率
if data_length == 8760:
title_suffix = " (全年8760小时)"
# 对于全年数据我们采样显示每6小时显示一个点
sample_rate = 6
sampled_hours = hours[::sample_rate]
sampled_solar = solar_output[::sample_rate]
sampled_wind = wind_output[::sample_rate]
sampled_thermal = thermal_output[::sample_rate]
sampled_load = load_demand[::sample_rate]
sampled_storage = result['storage_profile'][::sample_rate]
sampled_charge = result['charge_profile'][::sample_rate]
sampled_discharge = result['discharge_profile'][::sample_rate]
else:
title_suffix = " (24小时)"
sampled_hours = hours
sampled_solar = solar_output
sampled_wind = wind_output
sampled_thermal = thermal_output
sampled_load = load_demand
sampled_storage = result['storage_profile']
sampled_charge = result['charge_profile']
sampled_discharge = result['discharge_profile']
# 创建图形
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(14, 12))
fig.suptitle('多能互补系统24小时运行曲线', fontsize=16, fontweight='bold')
# === 第一个子图:发电和负荷曲线 ===
ax1.plot(sampled_hours, sampled_load, 'r-', linewidth=2, label='负荷需求')
ax1.plot(sampled_hours, sampled_thermal, 'b-', linewidth=2, label='火电出力')
ax1.plot(sampled_hours, sampled_wind, 'g-', linewidth=2, label='风电出力')
ax1.plot(sampled_hours, sampled_solar, 'orange', linewidth=2, label='光伏出力')
# 计算总发电量
total_generation = [sampled_thermal[i] + sampled_wind[i] + sampled_solar[i] for i in range(len(sampled_thermal))]
ax1.plot(sampled_hours, total_generation, 'k--', linewidth=1.5, alpha=0.7, label='总发电量')
ax1.set_xlabel('时间 (小时)')
ax1.set_ylabel('功率 (MW)')
ax1.set_title(f'发电与负荷曲线{title_suffix}')
ax1.legend(loc='upper right')
ax1.grid(True, alpha=0.3)
ax1.set_xlim(0, max(sampled_hours))
# === 第二个子图:储能充放电曲线 ===
discharge_power = [-x for x in sampled_discharge] # 放电显示为负值
ax2.bar(sampled_hours, sampled_charge, color='green', alpha=0.7, label='充电功率')
ax2.bar(sampled_hours, discharge_power, color='red', alpha=0.7, label='放电功率')
ax2.set_xlabel('时间 (小时)')
ax2.set_ylabel('功率 (MW)')
ax2.set_title(f'储能充放电功率{title_suffix}')
ax2.legend(loc='upper right')
ax2.grid(True, alpha=0.3)
ax2.set_xlim(0, max(sampled_hours))
ax2.axhline(y=0, color='black', linestyle='-', linewidth=0.5)
# === 第三个子图:储能状态曲线 ===
ax3.plot(sampled_hours, sampled_storage, 'b-', linewidth=1, marker='o', markersize=2)
ax3.fill_between(sampled_hours, 0, sampled_storage, alpha=0.3, color='blue')
ax3.set_xlabel('时间 (小时)')
ax3.set_ylabel('储能容量 (MWh)')
ax3.set_title(f'储能状态 (总容量: {result["required_storage_capacity"]:.2f} MWh){title_suffix}')
ax3.grid(True, alpha=0.3)
ax3.set_xlim(0, max(sampled_hours))
ax3.set_ylim(bottom=0)
# 调整布局
plt.tight_layout()
# 保存图片
plt.savefig('system_curves.png', dpi=300, bbox_inches='tight')
plt.close() # 关闭图形,不显示窗口
# 打印统计信息
print("\n=== 系统运行统计 ===")
print(f"所需储能总容量: {result['required_storage_capacity']:.2f} MWh")
print(f"最大储能状态: {max(result['storage_profile']):.2f} MWh")
print(f"最小储能状态: {min(result['storage_profile']):.2f} MWh")
print(f"总充电量: {sum(result['charge_profile']):.2f} MWh")
print(f"总放电量: {sum(result['discharge_profile']):.2f} MWh")
print(f"弃风率: {result['total_curtailment_wind_ratio']:.3f}")
print(f"弃光率: {result['total_curtailment_solar_ratio']:.3f}")
print(f"上网电量比例: {result['total_grid_feed_in_ratio']:.3f}")
def generate_yearly_data():
"""生成8760小时的示例数据"""
# 基础日模式
daily_solar = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
daily_wind = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
daily_thermal = [5.0] * 24
daily_load = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
# 添加季节性变化
import random
random.seed(42)
yearly_solar = []
yearly_wind = []
yearly_thermal = []
yearly_load = []
for day in range(365):
# 季节性因子(夏季光伏更强,冬季负荷更高)
season_factor = 1.0 + 0.3 * np.sin(2 * np.pi * day / 365)
for hour in range(24):
# 添加随机变化
solar_variation = 1.0 + 0.2 * (random.random() - 0.5)
wind_variation = 1.0 + 0.3 * (random.random() - 0.5)
load_variation = 1.0 + 0.1 * (random.random() - 0.5)
yearly_solar.append(daily_solar[hour] * season_factor * solar_variation)
yearly_wind.append(daily_wind[hour] * wind_variation)
yearly_thermal.append(daily_thermal[hour])
yearly_load.append(daily_load[hour] * (2.0 - season_factor) * load_variation)
return yearly_solar, yearly_wind, yearly_thermal, yearly_load
def main():
"""主函数"""
import sys
# 检查命令行参数
use_yearly_data = len(sys.argv) > 1 and sys.argv[1] == '--yearly'
if use_yearly_data:
print("生成8760小时全年数据...")
solar_output, wind_output, thermal_output, load_demand = generate_yearly_data()
print(f"数据长度: {len(solar_output)} 小时")
else:
print("使用24小时示例数据...")
# 示例数据
solar_output = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
wind_output = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
thermal_output = [5.0] * 24
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
# 系统参数
params = SystemParameters(
max_curtailment_wind=0.1,
max_curtailment_solar=0.1,
max_grid_ratio=0.2,
storage_efficiency=0.9,
discharge_rate=1.0,
charge_rate=1.0
)
# 计算最优储能容量
print("正在计算最优储能容量...")
result = optimize_storage_capacity(
solar_output, wind_output, thermal_output, load_demand, params
)
# 绘制曲线
print("正在绘制系统运行曲线...")
plot_system_curves(solar_output, wind_output, thermal_output, load_demand, result)
print("\n曲线图已保存为 'system_curves.png'")
if __name__ == "__main__":
main()