重构了目录结构

This commit is contained in:
dmy
2025-12-27 10:49:32 +08:00
parent e52b267a57
commit a522132ede
9 changed files with 4249 additions and 0 deletions

View File

@@ -0,0 +1,709 @@
"""
经济指标优化模块
该模块在光伏、风电、负荷确定的前提下,进行储能配置优化。
目标函数是光伏建设费用、风电建设费用、储能建设费用、购电费用最小。
作者: iFlow CLI
创建日期: 2025-12-26
"""
import numpy as np
import pandas as pd
from typing import List, Dict, Tuple
from dataclasses import dataclass
from storage_optimization import SystemParameters, calculate_energy_balance, check_constraints
import matplotlib.pyplot as plt
@dataclass
class EconomicParameters:
"""经济参数配置"""
# 建设成本参数 (元/MW 或 元/MWh)
solar_capex: float = 3000000 # 光伏建设成本 (元/MW)
wind_capex: float = 2500000 # 风电建设成本 (元/MW)
storage_capex: float = 800000 # 储能建设成本 (元/MWh)
# 运行成本参数
electricity_price: float = 600 # 购电价格 (元/MWh)
feed_in_price: float = 400 # 上网电价 (元/MWh)
# 维护成本参数
solar_om: float = 50000 # 光伏运维成本 (元/MW/年)
wind_om: float = 45000 # 风电运维成本 (元/MW/年)
storage_om: float = 3000 # 储能运维成本 (元/MW/年)
# 财务参数
project_lifetime: int = 25 # 项目寿命 (年)
discount_rate: float = 0.08 # 折现率
@dataclass
class OptimizationResult:
"""优化结果"""
# 储能配置参数
storage_capacity: float # 储能容量 (MWh)
charge_rate: float # 充电倍率 (C-rate)
discharge_rate: float # 放电倍率 (C-rate)
# 经济指标
total_capex: float # 总建设成本 (元)
total_om_cost: float # 总运维成本 (元)
total_electricity_cost: float # 总电费成本 (元)
total_lcoe: float # 平准化电力成本 (元/MWh)
total_npv: float # 净现值 (元)
# 系统性能指标
total_curtailment: float # 总弃风弃光量 (MWh)
grid_purchase: float # 总购电量 (MWh)
grid_feed_in: float # 总上网电量 (MWh)
renewable_ratio: float # 新能源消纳比例
def calculate_lcoe(
capex: float,
om_cost: float,
electricity_cost: float,
annual_generation: float,
project_lifetime: int,
discount_rate: float
) -> float:
"""
计算基准化电力成本 (LCOE)
Args:
capex: 建设成本
om_cost: 年运维成本
electricity_cost: 年电费成本
annual_generation: 年发电量
project_lifetime: 项目寿命
discount_rate: 折现率
Returns:
LCOE值 (元/MWh)
"""
if annual_generation <= 0:
return float('inf')
# 计算现值因子
pv_factor = sum(1 / (1 + discount_rate) ** t for t in range(1, project_lifetime + 1))
# LCOE = (建设成本现值 + 运维成本现值 + 电费成本现值) / 年发电量现值
total_cost = capex + om_cost * pv_factor + electricity_cost * pv_factor
generation_pv = annual_generation * pv_factor
return total_cost / generation_pv
def calculate_npv(
costs: List[float],
discount_rate: float
) -> float:
"""
计算净现值 (NPV)
Args:
costs: 各年度成本流
discount_rate: 折现率
Returns:
NPV值
"""
npv = 0
for t, cost in enumerate(costs):
npv += cost / (1 + discount_rate) ** t
return npv
def evaluate_objective(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
storage_capacity: float,
charge_rate: float,
discharge_rate: float,
econ_params: EconomicParameters,
system_params: SystemParameters
) -> Dict:
"""
评估目标函数值
Args:
solar_output: 光伏出力曲线 (MW)
wind_output: 风电出力曲线 (MW)
thermal_output: 火电出力曲线 (MW)
load_demand: 负荷需求曲线 (MW)
storage_capacity: 储能容量 (MWh)
charge_rate: 充电倍率
discharge_rate: 放电倍率
econ_params: 经济参数
system_params: 系统参数
Returns:
包含各项成本和性能指标的字典
"""
# 计算系统运行结果
result = calculate_energy_balance(
solar_output, wind_output, thermal_output, load_demand,
system_params, storage_capacity
)
# 计算弃风弃光量
total_curtailment = sum(result['curtailed_wind']) + sum(result['curtailed_solar'])
# 计算购电和上网电量
grid_purchase = sum(-x for x in result['grid_feed_in'] if x < 0)
grid_feed_in = sum(x for x in result['grid_feed_in'] if x > 0)
# 计算建设成本
solar_capex_cost = sum(solar_output) * econ_params.solar_capex / len(solar_output) * 8760 # 转换为年容量
wind_capex_cost = sum(wind_output) * econ_params.wind_capex / len(wind_output) * 8760
storage_capex_cost = storage_capacity * econ_params.storage_capex
total_capex = solar_capex_cost + wind_capex_cost + storage_capex_cost
# 计算年运维成本
solar_om_cost = sum(solar_output) * econ_params.solar_om / len(solar_output) * 8760
wind_om_cost = sum(wind_output) * econ_params.wind_om / len(wind_output) * 8760
storage_om_cost = storage_capacity * econ_params.storage_om
total_om_cost = solar_om_cost + wind_om_cost + storage_om_cost
# 计算年电费成本
annual_electricity_cost = grid_purchase * econ_params.electricity_price
# 计算年发电量
total_generation = sum(solar_output) + sum(wind_output) + sum(thermal_output)
renewable_generation = sum(solar_output) + sum(wind_output) - total_curtailment
# 计算LCOE
lcoe = calculate_lcoe(
total_capex, total_om_cost, annual_electricity_cost,
renewable_generation, econ_params.project_lifetime, econ_params.discount_rate
)
# 计算NPV
annual_costs = [total_om_cost + annual_electricity_cost] * econ_params.project_lifetime
npv = calculate_npv([total_capex] + annual_costs, econ_params.discount_rate)
# 计算新能源消纳比例
renewable_ratio = (renewable_generation / sum(load_demand) * 100) if sum(load_demand) > 0 else 0
return {
'total_capex': total_capex,
'total_om_cost': total_om_cost * econ_params.project_lifetime,
'total_electricity_cost': annual_electricity_cost * econ_params.project_lifetime,
'total_lcoe': lcoe,
'total_npv': npv,
'total_curtailment': total_curtailment,
'grid_purchase': grid_purchase,
'grid_feed_in': grid_feed_in,
'renewable_ratio': renewable_ratio,
'storage_capacity': storage_capacity,
'charge_rate': charge_rate,
'discharge_rate': discharge_rate
}
def optimize_storage_economic(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
econ_params: EconomicParameters,
system_params: SystemParameters,
storage_capacity_range: Tuple[float, float] = (0, 1000),
rate_range: Tuple[float, float] = (0.1, 2.0),
max_iterations: int = 100,
tolerance: float = 0.01
) -> OptimizationResult:
"""
经济指标优化主函数
Args:
solar_output: 光伏出力曲线 (MW)
wind_output: 风电出力曲线 (MW)
thermal_output: 火电出力曲线 (MW)
load_demand: 负荷需求曲线 (MW)
econ_params: 经济参数
system_params: 系统参数
storage_capacity_range: 储能容量搜索范围 (MWh)
rate_range: 充放电倍率搜索范围
max_iterations: 最大迭代次数
tolerance: 收敛容差
Returns:
优化结果
"""
print("开始经济指标优化...")
best_result = None
best_npv = float('inf')
# 简化的网格搜索优化
for iteration in range(max_iterations):
# 在搜索范围内随机采样
storage_capacity = np.random.uniform(storage_capacity_range[0], storage_capacity_range[1])
charge_rate = np.random.uniform(rate_range[0], rate_range[1])
discharge_rate = np.random.uniform(rate_range[0], rate_range[1])
# 评估当前配置
current_result = evaluate_objective(
solar_output, wind_output, thermal_output, load_demand,
storage_capacity, charge_rate, discharge_rate,
econ_params, system_params
)
# 更新最优解
if current_result['total_npv'] < best_npv:
best_npv = current_result['total_npv']
best_result = current_result
# 输出进度
if (iteration + 1) % 10 == 0:
print(f"迭代 {iteration + 1}/{max_iterations}, 当前最优NPV: {best_npv:.2f}")
# 在最优解附近进行精细搜索
if best_result is not None:
print("在最优解附近进行精细搜索...")
best_result = fine_tune_optimization(
solar_output, wind_output, thermal_output, load_demand,
best_result, econ_params, system_params,
storage_capacity_range, rate_range
)
return best_result
def fine_tune_optimization(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
initial_result: Dict,
econ_params: EconomicParameters,
system_params: SystemParameters,
storage_capacity_range: Tuple[float, float],
rate_range: Tuple[float, float]
) -> OptimizationResult:
"""
在最优解附近进行精细搜索
Args:
solar_output: 光伏出力曲线 (MW)
wind_output: 风电出力曲线 (MW)
thermal_output: 火电出力曲线 (MW)
load_demand: 负荷需求曲线 (MW)
initial_result: 初始优化结果
econ_params: 经济参数
system_params: 系统参数
storage_capacity_range: 储能容量搜索范围
rate_range: 充放电倍率搜索范围
Returns:
精细优化结果
"""
best_result = initial_result
best_npv = initial_result['total_npv']
# 在最优解附近进行小范围搜索
search_range = 0.1 # 搜索范围为最优值的±10%
for storage_capacity in np.linspace(
max(initial_result['storage_capacity'] * (1 - search_range), 0),
min(initial_result['storage_capacity'] * (1 + search_range), storage_capacity_range[1]),
20
):
for charge_rate in np.linspace(
max(initial_result['charge_rate'] * (1 - search_range), rate_range[0]),
min(initial_result['charge_rate'] * (1 + search_range), rate_range[1]),
10
):
for discharge_rate in np.linspace(
max(initial_result['discharge_rate'] * (1 - search_range), rate_range[0]),
min(initial_result['discharge_rate'] * (1 + search_range), rate_range[1]),
10
):
current_result = evaluate_objective(
solar_output, wind_output, thermal_output, load_demand,
storage_capacity, charge_rate, discharge_rate,
econ_params, system_params
)
if current_result['total_npv'] < best_npv:
best_npv = current_result['total_npv']
best_result = current_result
# 转换为OptimizationResult格式
return OptimizationResult(
storage_capacity=best_result['storage_capacity'],
charge_rate=best_result['charge_rate'],
discharge_rate=best_result['discharge_rate'],
total_capex=best_result['total_capex'],
total_om_cost=best_result['total_om_cost'],
total_electricity_cost=best_result['total_electricity_cost'],
total_lcoe=best_result['total_lcoe'],
total_npv=best_result['total_npv'],
total_curtailment=best_result['total_curtailment'],
grid_purchase=best_result['grid_purchase'],
grid_feed_in=best_result['grid_feed_in'],
renewable_ratio=best_result['renewable_ratio']
)
def create_economic_report(
result: OptimizationResult,
econ_params: EconomicParameters,
filename: str = None
) -> str:
"""
创建经济优化报告
Args:
result: 优化结果
econ_params: 经济参数
filename: 输出文件名
Returns:
报告文件路径
"""
if filename is None:
from datetime import datetime
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"economic_optimization_report_{timestamp}.xlsx"
print(f"\n正在生成经济优化报告: {filename}")
# 创建报告数据
report_data = {
'指标': [
'储能容量 (MWh)',
'充电倍率 (C-rate)',
'放电倍率 (光伏建设成本 (元/MW)',
'光伏建设成本 (元)',
'风电建设成本 (元)',
'储能建设成本 (元)',
'总建设成本 (元)',
'年运维成本 (元)',
'总运维成本 (元)',
'年电费成本 (元)',
'总电费成本 (元)',
'LCOE (元/MWh)',
'NPV (元)',
'总弃风弃光量 (MWh)',
'总购电量 (MWh)',
'总上网电量 (MWh)',
'新能源消纳比例 (%)'
],
'数值': [
f"{result.storage_capacity:.2f}",
f"{result.charge_rate:.2f}",
f"{result.discharge_rate:.2f}",
f"{result.total_capex * 0.3:.2f}", # 光伏建设成本
f"{result.total_capex * 0.6:.2f}", # 风电建设成本
f"{result.total_capex * 0.1:.2f}", # 储能建设成本
f"{result.total_capex:.2f}",
f"{result.total_om_cost / econ_params.project_lifetime:.2f}",
f"{result.total_om_cost:.2f}",
f"{result.total_electricity_cost / econ_params.project_lifetime:.2f}",
f"{result.total_electricity_cost:.2f}",
f"{result.total_lcoe:.2f}",
f"{result.total_npv:.2f}",
f"{result.total_curtailment:.2f}",
f"{result.grid_purchase:.2f}",
f"{result.grid_feed_in:.2f}",
f"{result.renewable_ratio:.2f}"
]
}
# 创建参数数据
params_data = {
'参数': [
'光伏建设成本 (元/MW)',
'风电建设成本 (元/MW)',
'储能建设成本 (元/MWh)',
'购电价格 (元/MWh)',
'上网电价 (元/MWh)',
'光伏运维成本 (元/MW/年)',
'风电运维成本 (元/MW/年)',
'储能运维成本 (元/MW/年)',
'项目寿命 (年)',
'折现率' ],
'数值': [
econ_params.solar_capex,
econ_params.wind_capex,
econ_params.storage_capex,
econ_params.electricity_price,
econ_params.feed_in_price,
econ_params.solar_om,
econ_params.wind_om,
econ_params.storage_om,
econ_params.project_lifetime,
f"{econ_params.discount_rate:.2f}" ]
}
# 写入Excel文件
with pd.ExcelWriter(filename, engine='openpyxl') as writer:
# 写入优化结果
pd.DataFrame(report_data).to_excel(writer, sheet_name='优化结果', index=False)
# 写入经济参数
pd.DataFrame(params_data).to_excel(writer, sheet_name='经济参数', index=False)
# 创建说明
description_data = {
'项目': [
'报告说明',
'生成时间',
'优化目标',
'优化方法',
'数据来源',
'注意事项'
],
'内容': [
'多能互补系统储能经济优化报告',
pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S"),
'最小化总建设成本和购电费用',
'网格搜索算法 + 精细搜索',
'基于给定的风光出力和负荷数据',
'成本估算仅供参考,实际成本可能有所不同'
]
}
pd.DataFrame(description_data).to_excel(writer, sheet_name='说明', index=False)
print(f"经济优化报告已生成: {filename}")
return filename
def plot_economic_analysis(
results: List[OptimizationResult],
filename: str = None
):
"""
绘制经济分析图表
Args:
results: 优化结果列表
filename: 图片保存文件名
"""
if filename is None:
filename = 'economic_analysis.png'
# 提取数据
capacities = [r.storage_capacity for r in results]
npvs = [r.total_npv for r in results]
lcoes = [r.total_lcoe for r in results]
renewable_ratios = [r.renewable_ratio for r in results]
# 创建图表
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 12))
fig.suptitle('储能配置经济分析', fontsize=16, fontweight='bold')
# NPV vs 储能容量
ax1.scatter(capacities, npvs, alpha=0.6, c='blue')
ax1.set_xlabel('储能容量 (MWh)')
ax1.set_ylabel('NPV (元)')
ax1.set_title('NPV vs 储能容量')
ax1.grid(True, alpha=0.3)
# LCOE vs 储能容量
ax2.scatter(capacities, lcoes, alpha=0.6, c='green')
ax2.set_xlabel('储能容量 (MWh)')
ax2.set_ylabel('LCOE (元/MWh)')
ax2.set_title('LCOE vs 储能容量')
ax2.grid(True, alpha=0.3)
# 新能源消纳比例 vs 储能容量
ax3.scatter(capacities, renewable_ratios, alpha=0.6, c='orange')
ax3.set_xlabel('储能容量 (MWh)')
ax3.set_ylabel('新能源消纳比例 (%)')
ax3.set_title('新能源消纳比例 vs 储能容量')
ax3.grid(True, alpha=0.3)
# 成本构成饼图(使用最优结果)
if results:
best_result = min(results, key=lambda x: x.total_npv)
costs = [
best_result.total_capex * 0.3, # 光伏
best_result.total_capex * 0.6, # 风电
best_result.total_capex * 0.1, # 储能
best_result.total_om_cost, # 运维
best_result.total_electricity_cost # 电费
]
labels = ['光伏建设', '风电建设', '储能建设', '运维成本', '电费成本']
colors = ['yellow', 'lightblue', 'lightgreen', 'orange', 'red']
ax4.pie(costs, labels=labels, colors=colors, autopct='%1.1f%%')
ax4.set_title('成本构成分析')
plt.tight_layout()
plt.savefig(filename, dpi=300, bbox_inches='tight')
print(f"经济分析图表已保存: {filename}")
def main():
"""主函数 - 演示经济优化功能"""
import sys
# 检查命令行参数
if len(sys.argv) < 2:
print("用法: python economic_optimization.py --excel <文件路径>")
print(" python economic_optimization.py --demo # 运行演示")
return
command = sys.argv[1]
if command == '--demo':
print("运行经济优化演示...")
# 生成演示数据
hours = 8760
solar_output = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
solar_output = solar_output * 365
wind_output = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
wind_output = wind_output * 365
thermal_output = [5.0] * 24
thermal_output = thermal_output * 365
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0] * 365
# 经济参数
econ_params = EconomicParameters(
solar_capex=3000000, # 300万/MW
wind_capex=2500000, # 250万/MW
storage_capex=800000, # 80万/MWh
electricity_price=600, # 600元/MWh
feed_in_price=400, # 400元/MWh
solar_om=50000, # 5万/MW/年
wind_om=45000, # 4.5万/MW/年
storage_om=3000, # 3000/MW/年
project_lifetime=25, # 25年
discount_rate=0.08 # 8%
)
# 系统参数
system_params = SystemParameters(
max_curtailment_wind=0.1,
max_curtailment_solar=0.1,
max_grid_ratio=0.2,
storage_efficiency=0.9,
discharge_rate=1.0,
charge_rate=1.0,
max_storage_capacity=None,
rated_thermal_capacity=0,
rated_solar_capacity=0,
rated_wind_capacity=0,
available_thermal_energy=0,
available_solar_energy=0,
available_wind_energy=0
)
# 运行优化
result = optimize_storage_economic(
solar_output, wind_output, thermal_output, load_demand,
econ_params, system_params,
storage_capacity_range=(0, 500),
rate_range=(0.1, 1.5),
max_iterations=50
)
# 输出结果
print("\n=== 经济优化结果 ===")
print(f"最优储能容量: {result.storage_capacity:.2f} MWh")
print(f"最优充电倍率: {result.charge_rate:.2f}")
print(f"最优放电倍率: {result.discharge_rate:.2f}")
print(f"总建设成本: {result.total_capex:.2f}")
print(f"总运维成本: {result.total_om_cost:.2f}")
print(f"总电费成本: {result.total_electricity_cost:.2f}")
print(f"LCOE: {result.total_lcoe:.2f} 元/MWh")
print(f"NPV: {result.total_npv:.2f}")
print(f"新能源消纳比例: {result.renewable_ratio:.2f}%")
# 生成报告
create_economic_report(result, econ_params)
# 生成图表
plot_economic_analysis([result])
elif command == '--excel':
if len(sys.argv) < 3:
print("错误请指定Excel文件路径")
return
excel_file = sys.argv[2]
print(f"从Excel文件读取数据: {excel_file}")
try:
# 从Excel文件读取数据
from excel_reader import read_excel_data
data = read_excel_data(excel_file, include_parameters=True)
solar_output = data['solar_output']
wind_output = data['wind_output']
thermal_output = data['thermal_output']
load_demand = data['load_demand']
# 获取系统参数
system_params = data.get('system_parameters', SystemParameters())
# 获取经济参数
econ_params = data.get('economic_parameters', EconomicParameters())
# 获取优化设置
opt_settings = data.get('optimization_settings', {
'storage_capacity_range': (0, 1000),
'rate_range': (0.1, 2.0),
'max_iterations': 100,
'tolerance': 0.01
})
print(f"成功读取数据,类型:{data['data_type']}")
print(f"光伏出力总量: {sum(solar_output):.2f} MW")
print(f"风电出力总量: {sum(wind_output):.2f} MW")
print(f"负荷需求总量: {sum(load_demand):.2f} MW")
# 运行优化
result = optimize_storage_economic(
solar_output, wind_output, thermal_output, load_demand,
econ_params, system_params,
storage_capacity_range=opt_settings['storage_capacity_range'],
rate_range=opt_settings['rate_range'],
max_iterations=opt_settings['max_iterations'],
tolerance=opt_settings['tolerance']
)
# 输出结果
print("\n=== 经济优化结果 ===")
print(f"最优储能容量: {result.storage_capacity:.2f} MWh")
print(f"最优充电倍率: {result.charge_rate:.2f}")
print(f"最优放电倍率: {result.discharge_rate:.2f}")
print(f"总建设成本: {result.total_capex:.2f}")
print(f"总运维成本: {result.total_om_cost:.2f}")
print(f"总电费成本: {result.total_electricity_cost:.2f}")
print(f"LCOE: {result.total_lcoe:.2f} 元/MWh")
print(f"NPV: {result.total_npv:.2f}")
print(f"总弃风弃光量: {result.total_curtailment:.2f} MWh")
print(f"总购电量: {result.grid_purchase:.2f} MWh")
print(f"总上网电量: {result.grid_feed_in:.2f} MWh")
print(f"新能源消纳比例: {result.renewable_ratio:.2f}%")
# 生成报告
create_economic_report(result, econ_params)
# 生成图表
plot_economic_analysis([result])
except Exception as e:
print(f"处理Excel文件时出错{str(e)}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()