修复了弃风计算不正确的bug。

This commit is contained in:
dmy
2025-12-26 16:48:11 +08:00
parent 53b23490ae
commit 58d4651e88
5 changed files with 1498 additions and 93 deletions

166
main.py
View File

@@ -24,7 +24,7 @@ plt.rcParams['axes.unicode_minus'] = False
def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, result, show_window=False, display_only=False):
"""
绘制系统运行曲线
Args:
solar_output: 光伏出力曲线 (MW) - 支持24小时或8760小时
wind_output: 风电出力曲线 (MW) - 支持24小时或8760小时
@@ -36,13 +36,13 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
"""
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
hours = np.arange(len(solar_output))
data_length = len(solar_output)
# 确定图表标题和采样率
if data_length == 8760:
title_suffix = " (全年8760小时)"
@@ -68,34 +68,34 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
sampled_charge = result['charge_profile']
sampled_discharge = result['discharge_profile']
sampled_grid_feed_in = result['grid_feed_in']
# 创建图形4个子图
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(14, 16))
fig.suptitle('多能互补系统24小时运行曲线', fontsize=16, fontweight='bold')
# === 第一个子图:发电和负荷曲线 ===
ax1.plot(sampled_hours, sampled_load, 'r-', linewidth=2, label='负荷需求')
ax1.plot(sampled_hours, sampled_thermal, 'b-', linewidth=2, label='火电出力')
ax1.plot(sampled_hours, sampled_wind, 'g-', linewidth=2, label='风电出力')
ax1.plot(sampled_hours, sampled_solar, 'orange', linewidth=2, label='光伏出力')
# 计算总发电量
total_generation = [sampled_thermal[i] + sampled_wind[i] + sampled_solar[i] for i in range(len(sampled_thermal))]
ax1.plot(sampled_hours, total_generation, 'k--', linewidth=1.5, alpha=0.7, label='总发电量')
ax1.set_xlabel('时间 (小时)')
ax1.set_ylabel('功率 (MW)')
ax1.set_title(f'发电与负荷曲线{title_suffix}')
ax1.legend(loc='upper right')
ax1.grid(True, alpha=0.3)
ax1.set_xlim(0, max(sampled_hours))
# === 第二个子图:储能充放电曲线 ===
discharge_power = [-x for x in sampled_discharge] # 放电显示为负值
ax2.bar(sampled_hours, sampled_charge, color='green', alpha=0.7, label='充电功率')
ax2.bar(sampled_hours, discharge_power, color='red', alpha=0.7, label='放电功率')
ax2.set_xlabel('时间 (小时)')
ax2.set_ylabel('功率 (MW)')
ax2.set_title(f'储能充放电功率{title_suffix}')
@@ -103,29 +103,29 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
ax2.grid(True, alpha=0.3)
ax2.set_xlim(0, max(sampled_hours))
ax2.axhline(y=0, color='black', linestyle='-', linewidth=0.5)
# === 第三个子图:储能状态曲线 ===
ax3.plot(sampled_hours, sampled_storage, 'b-', linewidth=1, marker='o', markersize=2)
ax3.fill_between(sampled_hours, 0, sampled_storage, alpha=0.3, color='blue')
ax3.set_xlabel('时间 (小时)')
ax3.set_ylabel('储能容量 (MWh)')
ax3.set_title(f'储能状态 (总容量: {result["required_storage_capacity"]:.2f} MWh){title_suffix}')
ax3.grid(True, alpha=0.3)
ax3.set_xlim(0, max(sampled_hours))
ax3.set_ylim(bottom=0)
# === 第四个子图:购电量和上网电量曲线 ===
# 直接使用原始数据:正值表示上网电量,负值表示购电量
grid_power = sampled_grid_feed_in
# 绘制电网交互电量(正值上网,负值购电)
colors = ['brown' if x >= 0 else 'purple' for x in grid_power]
ax4.bar(sampled_hours, grid_power, color=colors, alpha=0.7, label='电网交互电量')
# 添加零线
ax4.axhline(y=0, color='black', linestyle='-', linewidth=0.5)
# 添加图例说明
from matplotlib.patches import Patch
legend_elements = [
@@ -133,16 +133,16 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
Patch(facecolor='purple', alpha=0.7, label='购电量 (-)')
]
ax4.legend(handles=legend_elements, loc='upper right')
ax4.set_xlabel('时间 (小时)')
ax4.set_ylabel('功率 (MW)')
ax4.set_title(f'电网交互电量{title_suffix} (正值:上网, 负值:购电)')
ax4.grid(True, alpha=0.3)
ax4.set_xlim(0, max(sampled_hours))
# 调整布局
plt.tight_layout()
# 根据参数决定是否保存和显示图形
if display_only:
# 只显示,不保存
@@ -153,7 +153,7 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
else:
# 保存图片
plt.savefig('system_curves.png', dpi=300, bbox_inches='tight')
# 根据参数决定是否显示图形窗口
if show_window:
try:
@@ -163,7 +163,7 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
print("图形已保存为 'system_curves.png'")
else:
plt.close() # 关闭图形,不显示窗口
# 打印统计信息
print("\n=== 系统运行统计 ===")
print(f"所需储能总容量: {result['required_storage_capacity']:.2f} MWh")
@@ -174,12 +174,12 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
print(f"弃风率: {result['total_curtailment_wind_ratio']:.3f}")
print(f"弃光率: {result['total_curtailment_solar_ratio']:.3f}")
print(f"上网电量比例: {result['total_grid_feed_in_ratio']:.3f}")
# 计算购电和上网电量统计
total_grid_feed_in = sum(result['grid_feed_in'])
total_grid_purchase = sum(-x for x in result['grid_feed_in'] if x < 0) # 购电量
total_grid_feed_out = sum(x for x in result['grid_feed_in'] if x > 0) # 上网电量
print(f"\n=== 电网交互统计 ===")
if total_grid_feed_in >= 0:
print(f"净上网电量: {total_grid_feed_in:.2f} MWh")
@@ -191,8 +191,41 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
def export_results_to_excel(solar_output, wind_output, thermal_output, load_demand, result, params, filename=None):
"""
将优化结果导出到Excel文件
多能互补系统储能优化结果导出到Excel文件,包含运行数据、统计结果和系统参数。
Args:
solar_output (list): 光伏出力曲线 (MW)
wind_output (list): 风电出力曲线 (MW)
thermal_output (list): 火电出力曲线 (MW)
load_demand (list): 负荷需求曲线 (MW)
result (dict): 包含以下键的优化结果字典:
- charge_profile: 储能充电功率曲线 (MW)
- discharge_profile: 储能放电功率曲线 (MW)
- storage_profile: 储能状态曲线 (MWh)
- curtailed_wind: 弃风功率曲线 (MW)
- curtailed_solar: 弃光功率曲线 (MW)
- grid_feed_in: 电网交互功率曲线 (MW, 负值表示购电)
- required_storage_capacity: 所需储能总容量 (MWh)
- total_curtailment_wind_ratio: 总弃风率
- total_curtailment_solar_ratio: 总弃光率
- total_grid_feed_in_ratio: 总上网电量比例
- energy_balance_check: 能量平衡校验结果
- capacity_limit_reached: 容量限制是否达到
params (object): 系统参数对象,包含各种技术参数
filename (str, optional): 输出文件名,如未提供则自动生成
Returns:
str: 生成的Excel文件路径
生成的Excel文件包含以下工作表:
- 运行数据: 小时级运行数据
- 统计结果: 关键性能指标统计
- 系统参数: 输入参数汇总
- 说明: 文件使用说明
"""
"""
将优化结果导出到Excel文件
Args:
solar_output: 光伏出力曲线 (MW)
wind_output: 风电出力曲线 (MW)
@@ -205,16 +238,16 @@ def export_results_to_excel(solar_output, wind_output, thermal_output, load_dema
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"storage_optimization_results_{timestamp}.xlsx"
print(f"\n正在导出结果到Excel文件: {filename}")
# 准备数据
hours = list(range(1, len(solar_output) + 1))
# 分离购电和上网电量
grid_purchase = []
grid_feed_out = []
for power in result['grid_feed_in']:
if power < 0:
grid_purchase.append(-power) # 购电,转换为正值
@@ -222,7 +255,7 @@ def export_results_to_excel(solar_output, wind_output, thermal_output, load_dema
else:
grid_purchase.append(0)
grid_feed_out.append(power) # 上网电量
# 创建主要数据DataFrame
data_df = pd.DataFrame({
'小时': hours,
@@ -239,12 +272,12 @@ def export_results_to_excel(solar_output, wind_output, thermal_output, load_dema
'购电量(MW)': grid_purchase,
'上网电量(MW)': grid_feed_out
})
# 创建统计信息DataFrame
total_grid_feed_in = sum(result['grid_feed_in'])
total_grid_purchase = sum(-x for x in result['grid_feed_in'] if x < 0) # 购电量
total_grid_feed_out = sum(x for x in result['grid_feed_in'] if x > 0) # 上网电量
stats_df = pd.DataFrame({
'指标': [
'所需储能总容量',
@@ -277,7 +310,7 @@ def export_results_to_excel(solar_output, wind_output, thermal_output, load_dema
"" if result['capacity_limit_reached'] else ""
]
})
# 创建系统参数DataFrame
params_df = pd.DataFrame({
'参数名称': [
@@ -326,18 +359,18 @@ def export_results_to_excel(solar_output, wind_output, thermal_output, load_dema
"MWh"
]
})
# 写入Excel文件
with pd.ExcelWriter(filename, engine='openpyxl') as writer:
# 写入主要数据
data_df.to_excel(writer, sheet_name='运行数据', index=False)
# 写入统计信息
stats_df.to_excel(writer, sheet_name='统计结果', index=False)
# 写入系统参数
params_df.to_excel(writer, sheet_name='系统参数', index=False)
# 创建说明工作表
description_df = pd.DataFrame({
'项目': [
@@ -356,7 +389,7 @@ def export_results_to_excel(solar_output, wind_output, thermal_output, load_dema
]
})
description_df.to_excel(writer, sheet_name='说明', index=False)
print(f"结果已成功导出到: {filename}")
return filename
@@ -367,70 +400,69 @@ def generate_yearly_data():
daily_solar = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
daily_wind = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
daily_thermal = [5.0] * 24
daily_load = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
daily_load = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
# 添加季节性变化
import random
random.seed(42)
yearly_solar = []
yearly_wind = []
yearly_thermal = []
yearly_load = []
for day in range(365):
# 季节性因子(夏季光伏更强,冬季负荷更高)
season_factor = 1.0 + 0.3 * np.sin(2 * np.pi * day / 365)
for hour in range(24):
# 添加随机变化
solar_variation = 1.0 + 0.2 * (random.random() - 0.5)
wind_variation = 1.0 + 0.3 * (random.random() - 0.5)
load_variation = 1.0 + 0.1 * (random.random() - 0.5)
yearly_solar.append(daily_solar[hour] * season_factor * solar_variation)
yearly_wind.append(daily_wind[hour] * wind_variation)
yearly_thermal.append(daily_thermal[hour])
yearly_load.append(daily_load[hour] * (2.0 - season_factor) * load_variation)
return yearly_solar, yearly_wind, yearly_thermal, yearly_load
def main():
"""主函数"""
import sys
# 检查命令行参数
if len(sys.argv) < 2:
print_usage()
return
command = sys.argv[1]
show_window = '--show' in sys.argv # 检查是否包含--show参数
display_only = '--display-only' in sys.argv # 检查是否只显示不保存
if command == '--excel':
if command == '--excel':
if len(sys.argv) < 3:
print("错误请指定Excel文件路径")
print("用法python main.py --excel <文件路径>")
return
excel_file = sys.argv[2]
print(f"从Excel文件读取数据{excel_file}")
try:
data = read_excel_data(excel_file, include_parameters=True)
solar_output = data['solar_output']
wind_output = data['wind_output']
thermal_output = data['thermal_output']
load_demand = data['load_demand']
print(f"成功读取{data['data_type']}小时数据")
print(f"原始数据长度:{data['original_length']}小时")
print(f"处理后数据长度:{len(solar_output)}小时")
# 使用Excel中的系统参数
if 'system_parameters' in data:
params = data['system_parameters']
@@ -464,7 +496,7 @@ if command == '--excel':
available_solar_energy=600.0,
available_wind_energy=1200.0
)
# 显示数据统计
stats = analyze_excel_data(excel_file)
if stats:
@@ -474,14 +506,15 @@ if command == '--excel':
print(f" 最大光伏出力: {stats['max_solar']:.2f} MW")
print(f" 最大风电出力: {stats['max_wind']:.2f} MW")
print(f" 最大负荷: {stats['max_load']:.2f} MW")
except Exception as e:
print(f"读取Excel文件失败{str(e)}")
return
elif command == '--create-template':
template_type = sys.argv[2] if len(sys.argv) > 2 else "8760"
template_file = f"data_template_{template_type}.xlsx"
print(f"创建{template_type}小时Excel模板{template_file}")
create_excel_template(template_file, template_type)
return
@@ -491,9 +524,9 @@ if command == '--excel':
solar_output = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
wind_output = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
thermal_output = [5.0] * 24
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
# 使用默认系统参数
params = SystemParameters(
max_curtailment_wind=0.1,
@@ -509,9 +542,9 @@ if command == '--excel':
available_solar_energy=600.0,
available_wind_energy=1200.0
)
# 显示当前使用的系统参数
print("\n=== 当前使用的系统参数 ===")
print(f"最大弃风率: {params.max_curtailment_wind}")
@@ -528,23 +561,23 @@ if command == '--excel':
print(f"光伏可用发电量: {params.available_solar_energy} MWh")
print(f"风电可用发电量: {params.available_wind_energy} MWh")
print("=" * 40)
# 计算最优储能容量
print("正在计算最优储能容量...")
result = optimize_storage_capacity(
solar_output, wind_output, thermal_output, load_demand, params
)
# 绘制曲线
print("正在绘制系统运行曲线...")
plot_system_curves(solar_output, wind_output, thermal_output, load_demand, result, show_window, display_only)
# 导出结果到Excel
try:
export_results_to_excel(solar_output, wind_output, thermal_output, load_demand, result, params)
except Exception as e:
print(f"导出Excel文件失败{str(e)}")
if display_only:
print("\n正在显示图形窗口...")
elif show_window:
@@ -552,13 +585,12 @@ if command == '--excel':
else:
print("\n曲线图已保存为 'system_curves.png'")
def print_usage():
"""打印使用说明"""
print("多能互补系统储能容量优化程序")
print("\n使用方法:")
print(" python main.py --excel <文件路径> # 从Excel文件读取数据")
print(" python main.py --create-template [类型] # 创建Excel模板(24或8760)")
print(" python main.py # 使用24小时示例数据")
print(" python main.py --show # 显示图形窗口(可与其他参数组合使用)")