1.可以读excel文件

2.可以计算8760小时
This commit is contained in:
dmy
2025-12-25 19:56:21 +08:00
parent bab6b90694
commit 02b2fdc309
3 changed files with 337 additions and 5 deletions

View File

@@ -153,7 +153,7 @@ def create_comprehensive_plot(solar_output, wind_output, thermal_output, load_de
"""
ax7.text(0.1, 0.5, metrics_text, fontsize=11, verticalalignment='center',
fontfamily='monospace', bbox=dict(boxstyle='round', facecolor='lightgray', alpha=0.8))
fontfamily='SimHei', bbox=dict(boxstyle='round', facecolor='lightgray', alpha=0.8))
# 保存图片
plt.savefig('comprehensive_analysis.png', dpi=300, bbox_inches='tight')

266
excel_reader.py Normal file
View File

@@ -0,0 +1,266 @@
"""
Excel数据读取模块
该模块提供从Excel文件中读取8760小时负荷和发电曲线数据的功能。
作者: iFlow CLI
创建日期: 2025-12-25
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple
import os
def validate_excel_data(df: pd.DataFrame, data_type: str = "8760") -> bool:
"""
验证Excel数据格式是否正确
Args:
df: pandas DataFrame对象
data_type: 数据类型,"24""8760"
Returns:
bool: 验证是否通过
"""
expected_length = 8760 if data_type == "8760" else 24
# 检查行数
if len(df) != expected_length:
print(f"错误:数据行数应为{expected_length},实际为{len(df)}")
return False
# 检查必需的列
required_columns = ['光伏出力(MW)', '风电出力(MW)', '火电出力(MW)', '负荷需求(MW)']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
print(f"错误:缺少必需的列:{missing_columns}")
return False
# 检查数据类型和非负值
for col in required_columns:
if not pd.api.types.is_numeric_dtype(df[col]):
print(f"错误:列'{col}'必须为数值类型")
return False
if (df[col] < 0).any():
print(f"错误:列'{col}'包含负值")
return False
return True
def read_excel_data(file_path: str, sheet_name: str = 0) -> Dict[str, List[float]]:
"""
从Excel文件读取8760小时数据
Args:
file_path: Excel文件路径
sheet_name: 工作表名称或索引,默认为第一个工作表
Returns:
包含所有数据的字典
Raises:
FileNotFoundError: 文件不存在
ValueError: 数据格式错误
"""
# 检查文件是否存在
if not os.path.exists(file_path):
raise FileNotFoundError(f"文件不存在:{file_path}")
try:
# 读取Excel文件
df = pd.read_excel(file_path, sheet_name=sheet_name)
# 自动检测数据类型
data_type = "8760" if len(df) >= 8760 else "24"
# 验证数据格式
if not validate_excel_data(df, data_type):
raise ValueError("Excel数据格式验证失败")
# 提取数据并转换为列表
solar_output = df['光伏出力(MW)'].tolist()
wind_output = df['风电出力(MW)'].tolist()
thermal_output = df['火电出力(MW)'].tolist()
load_demand = df['负荷需求(MW)'].tolist()
# 如果是24小时数据扩展到8760小时重复365天
if data_type == "24" and len(df) == 24:
print("检测到24小时数据自动扩展到8760小时重复365天")
solar_output = solar_output * 365
wind_output = wind_output * 365
thermal_output = thermal_output * 365
load_demand = load_demand * 365
return {
'solar_output': solar_output,
'wind_output': wind_output,
'thermal_output': thermal_output,
'load_demand': load_demand,
'data_type': data_type,
'original_length': len(df)
}
except Exception as e:
raise ValueError(f"读取Excel文件失败{str(e)}")
def create_excel_template(file_path: str, data_type: str = "8760"):
"""
创建Excel数据模板文件
Args:
file_path: 保存路径
data_type: 数据类型,"24""8760"
"""
# 生成示例数据
if data_type == "24":
hours = 24
# 24小时典型日数据
solar = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
wind = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
thermal = [5.0] * 24
load = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
description = "24小时典型日数据模板"
else:
hours = 8760
# 生成8760小时的模拟数据基于日模式加季节变化
daily_solar = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
daily_wind = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
daily_thermal = [5.0] * 24
daily_load = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
solar = []
wind = []
thermal = []
load = []
np.random.seed(42) # 确保可重复性
for day in range(365):
# 季节性因子
season_factor = 1.0 + 0.3 * np.sin(2 * np.pi * day / 365)
for hour in range(24):
# 添加随机变化
solar_variation = 1.0 + 0.2 * (np.random.random() - 0.5)
wind_variation = 1.0 + 0.3 * (np.random.random() - 0.5)
load_variation = 1.0 + 0.1 * (np.random.random() - 0.5)
solar.append(daily_solar[hour] * season_factor * solar_variation)
wind.append(daily_wind[hour] * wind_variation)
thermal.append(daily_thermal[hour])
load.append(daily_load[hour] * (2.0 - season_factor) * load_variation)
description = "8760小时全年数据模板"
# 创建DataFrame
df = pd.DataFrame({
'小时': range(1, hours + 1),
'光伏出力(MW)': solar,
'风电出力(MW)': wind,
'火电出力(MW)': thermal,
'负荷需求(MW)': load
})
# 保存到Excel
with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='数据', index=False)
# 添加说明工作表
description_df = pd.DataFrame({
'项目': ['数据说明', '数据类型', '时间范围', '单位', '注意事项'],
'内容': [
description,
f'{data_type}小时电力数据',
f'1-{hours}小时',
'MW (兆瓦)',
'所有数值必须为非负数'
]
})
description_df.to_excel(writer, sheet_name='说明', index=False)
print(f"Excel模板已创建{file_path}")
def analyze_excel_data(file_path: str) -> Dict[str, float]:
"""
分析Excel数据的基本统计信息
Args:
file_path: Excel文件路径
Returns:
包含统计信息的字典
"""
try:
data = read_excel_data(file_path)
solar = data['solar_output']
wind = data['wind_output']
thermal = data['thermal_output']
load = data['load_demand']
return {
'data_length': len(solar),
'total_solar': sum(solar),
'total_wind': sum(wind),
'total_thermal': sum(thermal),
'total_generation': sum(solar) + sum(wind) + sum(thermal),
'total_load': sum(load),
'max_solar': max(solar),
'max_wind': max(wind),
'max_thermal': max(thermal),
'max_load': max(load),
'avg_solar': np.mean(solar),
'avg_wind': np.mean(wind),
'avg_thermal': np.mean(thermal),
'avg_load': np.mean(load)
}
except Exception as e:
print(f"分析数据失败:{str(e)}")
return {}
def main():
"""主函数演示Excel数据读取功能"""
print("=== Excel数据读取模块演示 ===")
# 创建模板文件
template_8760 = "data_template_8760.xlsx"
template_24 = "data_template_24.xlsx"
print("\n1. 创建Excel模板文件...")
create_excel_template(template_8760, "8760")
create_excel_template(template_24, "24")
# 分析模板数据
print(f"\n2. 分析{template_8760}数据...")
stats = analyze_excel_data(template_8760)
if stats:
print("数据统计信息:")
for key, value in stats.items():
print(f" {key}: {value:.2f}")
print(f"\n3. 演示读取{template_24}数据...")
try:
data = read_excel_data(template_24)
print(f"成功读取数据,类型:{data['data_type']}")
print(f"光伏出力前10小时{data['solar_output'][:10]}")
print(f"风电出力前10小时{data['wind_output'][:10]}")
print(f"负荷需求前10小时{data['load_demand'][:10]}")
except Exception as e:
print(f"读取失败:{str(e)}")
print("\n=== 演示完成 ===")
print("模板文件已创建您可以根据实际数据修改Excel文件。")
if __name__ == "__main__":
main()

70
main.py
View File

@@ -10,6 +10,7 @@
import matplotlib.pyplot as plt
import numpy as np
from storage_optimization import optimize_storage_capacity, SystemParameters
from excel_reader import read_excel_data, create_excel_template, analyze_excel_data
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
@@ -27,6 +28,12 @@ def plot_system_curves(solar_output, wind_output, thermal_output, load_demand, r
load_demand: 负荷曲线 (MW) - 支持24小时或8760小时
result: 优化结果字典
"""
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
hours = np.arange(len(solar_output))
data_length = len(solar_output)
@@ -160,12 +167,56 @@ def main():
import sys
# 检查命令行参数
use_yearly_data = len(sys.argv) > 1 and sys.argv[1] == '--yearly'
if len(sys.argv) < 2:
print_usage()
return
if use_yearly_data:
command = sys.argv[1]
if command == '--yearly':
print("生成8760小时全年数据...")
solar_output, wind_output, thermal_output, load_demand = generate_yearly_data()
print(f"数据长度: {len(solar_output)} 小时")
elif command == '--excel':
if len(sys.argv) < 3:
print("错误请指定Excel文件路径")
print("用法python main.py --excel <文件路径>")
return
excel_file = sys.argv[2]
print(f"从Excel文件读取数据{excel_file}")
try:
data = read_excel_data(excel_file)
solar_output = data['solar_output']
wind_output = data['wind_output']
thermal_output = data['thermal_output']
load_demand = data['load_demand']
print(f"成功读取{data['data_type']}小时数据")
print(f"原始数据长度:{data['original_length']}小时")
print(f"处理后数据长度:{len(solar_output)}小时")
# 显示数据统计
stats = analyze_excel_data(excel_file)
if stats:
print("\n数据统计:")
print(f" 总发电量: {stats['total_generation']:.2f} MW")
print(f" 总负荷: {stats['total_load']:.2f} MW")
print(f" 最大光伏出力: {stats['max_solar']:.2f} MW")
print(f" 最大风电出力: {stats['max_wind']:.2f} MW")
print(f" 最大负荷: {stats['max_load']:.2f} MW")
except Exception as e:
print(f"读取Excel文件失败{str(e)}")
return
elif command == '--create-template':
template_type = sys.argv[2] if len(sys.argv) > 2 else "8760"
template_file = f"data_template_{template_type}.xlsx"
print(f"创建{template_type}小时Excel模板{template_file}")
create_excel_template(template_file, template_type)
return
else:
print("使用24小时示例数据...")
# 示例数据
@@ -175,6 +226,7 @@ def main():
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
# 系统参数
params = SystemParameters(
max_curtailment_wind=0.1,
@@ -198,5 +250,19 @@ def main():
print("\n曲线图已保存为 'system_curves.png'")
def print_usage():
"""打印使用说明"""
print("多能互补系统储能容量优化程序")
print("\n使用方法:")
print(" python main.py --excel <文件路径> # 从Excel文件读取数据")
print(" python main.py --yearly # 使用8760小时全年数据")
print(" python main.py --create-template [类型] # 创建Excel模板(24或8760)")
print(" python main.py # 使用24小时示例数据")
print("\n示例:")
print(" python main.py --excel data.xlsx")
print(" python main.py --create-template 8760")
print(" python main.py --create-template 24")
if __name__ == "__main__":
main()