Files
multi_energy_complementarity/advanced_visualization.py

260 lines
9.5 KiB
Python
Raw Normal View History

2025-12-25 18:06:12 +08:00
"""
高级可视化程序 - 多能互补系统储能容量优化
该程序提供更丰富的可视化功能包括多种图表类型和交互式选项
作者: iFlow CLI
创建日期: 2025-12-25
"""
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
from datetime import datetime, timedelta
from storage_optimization import optimize_storage_capacity, SystemParameters
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
plt.rcParams['axes.unicode_minus'] = False
def create_comprehensive_plot(solar_output, wind_output, thermal_output, load_demand, result, params):
"""
创建综合可视化图表
Args:
solar_output: 24小时光伏出力曲线 (MW)
wind_output: 24小时风电出力曲线 (MW)
thermal_output: 24小时火电出力曲线 (MW)
load_demand: 24小时负荷曲线 (MW)
result: 优化结果字典
params: 系统参数
"""
hours = np.arange(24)
# 创建大型图形
fig = plt.figure(figsize=(16, 12))
fig.suptitle('多能互补系统储能容量优化分析', fontsize=18, fontweight='bold')
# 创建网格布局
gs = fig.add_gridspec(3, 3, hspace=0.3, wspace=0.3)
# === 主要图表:发电和负荷 ===
ax1 = fig.add_subplot(gs[0, :])
# 绘制各发电类型
ax1.fill_between(hours, 0, thermal_output, alpha=0.7, color='blue', label='火电')
ax1.fill_between(hours, thermal_output,
[thermal_output[i] + wind_output[i] for i in range(24)],
alpha=0.7, color='green', label='风电')
ax1.fill_between(hours, [thermal_output[i] + wind_output[i] for i in range(24)],
[thermal_output[i] + wind_output[i] + solar_output[i] for i in range(24)],
alpha=0.7, color='orange', label='光伏')
# 绘制负荷曲线
ax1.plot(hours, load_demand, 'r-', linewidth=3, label='负荷需求')
ax1.set_xlabel('时间 (小时)')
ax1.set_ylabel('功率 (MW)')
ax1.set_title('24小时发电与负荷平衡')
ax1.legend(loc='upper right')
ax1.grid(True, alpha=0.3)
ax1.set_xlim(0, 23)
# === 储能充放电功率 ===
ax2 = fig.add_subplot(gs[1, 0])
charge_power = result['charge_profile']
discharge_power = [-x for x in result['discharge_profile']]
ax2.bar(hours, charge_power, color='green', alpha=0.7, label='充电')
ax2.bar(hours, discharge_power, color='red', alpha=0.7, label='放电')
ax2.set_xlabel('时间 (小时)')
ax2.set_ylabel('功率 (MW)')
ax2.set_title('储能充放电功率')
ax2.legend()
ax2.grid(True, alpha=0.3)
ax2.axhline(y=0, color='black', linestyle='-', linewidth=0.5)
# === 储能状态 ===
ax3 = fig.add_subplot(gs[1, 1])
storage_soc = result['storage_profile']
ax3.plot(hours, storage_soc, 'b-', linewidth=2, marker='o')
ax3.fill_between(hours, 0, storage_soc, alpha=0.3, color='blue')
ax3.set_xlabel('时间 (小时)')
ax3.set_ylabel('储能容量 (MWh)')
ax3.set_title(f'储能状态 (容量: {result["required_storage_capacity"]:.1f} MWh)')
ax3.grid(True, alpha=0.3)
ax3.set_ylim(bottom=0)
# === 弃风弃光 ===
ax4 = fig.add_subplot(gs[1, 2])
curtailed_wind = result['curtailed_wind']
curtailed_solar = result['curtailed_solar']
ax4.bar(hours, curtailed_wind, color='lightblue', alpha=0.7, label='弃风')
ax4.bar(hours, curtailed_solar, color='yellow', alpha=0.7, label='弃光')
ax4.set_xlabel('时间 (小时)')
ax4.set_ylabel('功率 (MW)')
ax4.set_title('弃风弃光功率')
ax4.legend()
ax4.grid(True, alpha=0.3)
# === 能量饼图 ===
ax5 = fig.add_subplot(gs[2, 0])
# 计算总能量
total_gen = sum(thermal_output) + sum(wind_output) + sum(solar_output)
total_load = sum(load_demand)
total_curtailed = sum(curtailed_wind) + sum(curtailed_solar)
total_grid = sum(result['grid_feed_in'])
# 能量分配
energy_data = [total_load, total_curtailed, total_grid]
energy_labels = [f'负荷\n({total_load:.1f} MWh)',
f'弃风弃光\n({total_curtailed:.1f} MWh)',
f'上网电量\n({total_grid:.1f} MWh)']
colors = ['red', 'orange', 'green']
ax5.pie(energy_data, labels=energy_labels, colors=colors, autopct='%1.1f%%', startangle=90)
ax5.set_title('能量分配')
# === 发电构成饼图 ===
ax6 = fig.add_subplot(gs[2, 1])
gen_data = [sum(thermal_output), sum(wind_output), sum(solar_output)]
gen_labels = [f'火电\n({gen_data[0]:.1f} MWh)',
f'风电\n({gen_data[1]:.1f} MWh)',
f'光伏\n({gen_data[2]:.1f} MWh)']
gen_colors = ['blue', 'green', 'orange']
ax6.pie(gen_data, labels=gen_labels, colors=gen_colors, autopct='%1.1f%%', startangle=90)
ax6.set_title('发电构成')
# === 关键指标文本 ===
ax7 = fig.add_subplot(gs[2, 2])
ax7.axis('off')
# 显示关键指标
metrics_text = f"""
关键指标
所需储能容量: {result['required_storage_capacity']:.1f} MWh
储能效率: {params.storage_efficiency:.1%}
弃风率: {result['total_curtailment_wind_ratio']:.1%}
弃光率: {result['total_curtailment_solar_ratio']:.1%}
上网电量比例: {result['total_grid_feed_in_ratio']:.1%}
能量平衡: {'' if result['energy_balance_check'] else ''}
最大储能状态: {max(storage_soc):.1f} MWh
最小储能状态: {min(storage_soc):.1f} MWh
"""
ax7.text(0.1, 0.5, metrics_text, fontsize=11, verticalalignment='center',
fontfamily='SimHei', bbox=dict(boxstyle='round', facecolor='lightgray', alpha=0.8))
2025-12-25 18:06:12 +08:00
# 保存图片
plt.savefig('comprehensive_analysis.png', dpi=300, bbox_inches='tight')
plt.close()
print("综合分析图表已保存为 'comprehensive_analysis.png'")
def create_time_series_plot(solar_output, wind_output, thermal_output, load_demand, result):
"""
创建时间序列图表模拟真实的时间轴
"""
# 创建时间轴
base_time = datetime(2025, 1, 1, 0, 0, 0)
times = [base_time + timedelta(hours=i) for i in range(24)]
fig, ax = plt.subplots(figsize=(14, 8))
# 绘制发电和负荷
ax.plot(times, load_demand, 'r-', linewidth=3, label='负荷需求')
ax.plot(times, thermal_output, 'b-', linewidth=2, label='火电出力')
ax.plot(times, wind_output, 'g-', linewidth=2, label='风电出力')
ax.plot(times, solar_output, 'orange', linewidth=2, label='光伏出力')
# 计算总发电量
total_generation = [thermal_output[i] + wind_output[i] + solar_output[i] for i in range(24)]
ax.plot(times, total_generation, 'k--', linewidth=1.5, alpha=0.7, label='总发电量')
# 设置时间轴格式
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
ax.xaxis.set_major_locator(mdates.HourLocator(interval=2))
ax.set_xlabel('时间')
ax.set_ylabel('功率 (MW)')
ax.set_title('多能互补系统24小时发电曲线 (时间序列)')
ax.legend(loc='upper right')
ax.grid(True, alpha=0.3)
# 旋转时间标签
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45)
plt.tight_layout()
plt.savefig('time_series_curves.png', dpi=300, bbox_inches='tight')
plt.close()
print("时间序列图表已保存为 'time_series_curves.png'")
def main():
"""主函数"""
# 示例数据
solar_output = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
wind_output = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
thermal_output = [5.0] * 24
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
# 系统参数
params = SystemParameters(
max_curtailment_wind=0.1,
max_curtailment_solar=0.1,
max_grid_ratio=0.2,
storage_efficiency=0.9,
discharge_rate=1.0,
charge_rate=1.0
)
# 计算最优储能容量
print("正在计算最优储能容量...")
result = optimize_storage_capacity(
solar_output, wind_output, thermal_output, load_demand, params
)
print("\n=== 优化结果 ===")
print(f"所需储能总容量: {result['required_storage_capacity']:.2f} MWh")
print(f"弃风率: {result['total_curtailment_wind_ratio']:.3f}")
print(f"弃光率: {result['total_curtailment_solar_ratio']:.3f}")
print(f"上网电量比例: {result['total_grid_feed_in_ratio']:.3f}")
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
# 创建各种图表
print("\n正在生成可视化图表...")
# 1. 基础曲线图已在main.py中实现
print("1. 基础系统运行曲线图")
# 2. 综合分析图
print("2. 综合分析图表")
create_comprehensive_plot(solar_output, wind_output, thermal_output, load_demand, result, params)
# 3. 时间序列图
print("3. 时间序列图表")
create_time_series_plot(solar_output, wind_output, thermal_output, load_demand, result)
print("\n=== 所有图表生成完成 ===")
print("生成的文件:")
print("- system_curves.png: 基础系统运行曲线")
print("- comprehensive_analysis.png: 综合分析图表")
print("- time_series_curves.png: 时间序列图表")
if __name__ == "__main__":
main()