Files
multi_energy_complementarity/src/storage_optimization.py

769 lines
32 KiB
Python
Raw Normal View History

2025-12-27 10:49:32 +08:00
"""
多能互补系统储能容量优化计算程序
该程序计算多能互补系统中所需的储能容量确保系统在24小时内电能平衡
同时满足用户定义的弃风弃光率和上网电量比例约束
作者: iFlow CLI
创建日期: 2025-12-25
"""
import numpy as np
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
@dataclass
class SystemParameters:
"""系统参数配置类"""
max_curtailment_wind: float = 0.1 # 最大允许弃风率 (0.0-1.0)
max_curtailment_solar: float = 0.1 # 最大允许弃光率 (0.0-1.0)
max_grid_ratio: float = 0.2 # 最大允许上网电量比例 (0.0-∞,只限制上网电量,不限制购电)
storage_efficiency: float = 0.9 # 储能充放电效率 (0.0-1.0)
discharge_rate: float = 1.0 # 储能放电倍率 (C-rate)
charge_rate: float = 1.0 # 储能充电倍率 (C-rate)
max_storage_capacity: Optional[float] = None # 储能容量上限 (MWh)None表示无限制
# 新增额定装机容量参数
rated_thermal_capacity: float = 100.0 # 额定火电装机容量 (MW)
rated_solar_capacity: float = 100.0 # 额定光伏装机容量 (MW)
rated_wind_capacity: float = 100.0 # 额定风电装机容量 (MW)
# 新增可用发电量参数
available_thermal_energy: float = 2400.0 # 火电可用发电量 (MWh)
available_solar_energy: float = 600.0 # 光伏可用发电量 (MWh)
available_wind_energy: float = 1200.0 # 风电可用发电量 (MWh)
def validate_inputs(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
params: SystemParameters
) -> None:
"""
验证输入数据的有效性
Args:
solar_output: 24小时光伏出力曲线 (MW)
wind_output: 24小时风电出力曲线 (MW)
thermal_output: 24小时火电出力曲线 (MW)
load_demand: 24小时负荷曲线 (MW)
params: 系统参数配置
Raises:
ValueError: 当输入数据无效时抛出异常
"""
# 检查数据长度支持24小时或8760小时
data_length = len(solar_output)
valid_lengths = [24, 8760]
if data_length not in valid_lengths:
raise ValueError(f"输入数据长度必须为24小时或8760小时当前长度为{data_length}")
if len(wind_output) != data_length or len(thermal_output) != data_length or len(load_demand) != data_length:
raise ValueError("所有输入数据长度必须一致")
# 检查数据类型和范围
for name, data in [
("光伏出力", solar_output), ("风电出力", wind_output),
("火电出力", thermal_output), ("负荷需求", load_demand)
]:
if not all(isinstance(x, (int, float)) for x in data):
raise ValueError(f"{name}必须包含数值数据")
if any(x < 0 for x in data):
raise ValueError(f"{name}不能包含负值")
# 检查参数范围
if not (0.0 <= params.max_curtailment_wind <= 1.0):
raise ValueError("弃风率必须在0.0-1.0之间")
if not (0.0 <= params.max_curtailment_solar <= 1.0):
raise ValueError("弃光率必须在0.0-1.0之间")
# max_grid_ratio只限制上网电量比例必须为非负值
if not (0.0 <= params.max_grid_ratio):
raise ValueError("上网电量比例限制必须为非负值")
if not (0.0 < params.storage_efficiency <= 1.0):
raise ValueError("储能效率必须在0.0-1.0之间")
if params.discharge_rate <= 0 or params.charge_rate <= 0:
raise ValueError("充放电倍率必须大于0")
if params.max_storage_capacity is not None and params.max_storage_capacity <= 0:
raise ValueError("储能容量上限必须大于0")
# 验证新增的额定装机容量参数
if params.rated_thermal_capacity < 0:
raise ValueError("额定火电装机容量必须为非负值")
if params.rated_solar_capacity <= 0:
raise ValueError("额定光伏装机容量必须大于0")
if params.rated_wind_capacity <= 0:
raise ValueError("额定风电装机容量必须大于0")
# 验证新增的可用发电量参数
if params.available_thermal_energy < 0:
raise ValueError("火电可用发电量必须为非负值")
if params.available_solar_energy < 0:
raise ValueError("光伏可用发电量必须为非负值")
if params.available_wind_energy < 0:
raise ValueError("风电可用发电量必须为非负值")
def calculate_energy_balance(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
params: SystemParameters,
storage_capacity: float,
initial_soc: float = 0.0
2025-12-27 10:49:32 +08:00
) -> Dict[str, List[float]]:
"""
计算给定储能容量下的系统电能平衡
2025-12-27 10:49:32 +08:00
Args:
solar_output: 光伏出力曲线 (MW) - 支持24小时或8760小时
wind_output: 风电出力曲线 (MW) - 支持24小时或8760小时
thermal_output: 火电出力曲线 (MW) - 支持24小时或8760小时
load_demand: 负荷曲线 (MW) - 支持24小时或8760小时
params: 系统参数配置
storage_capacity: 储能容量 (MWh)
initial_soc: 初始储能状态 (MWh)默认为0.0
2025-12-27 10:49:32 +08:00
Returns:
包含各种功率曲线的字典
"""
# 转换为numpy数组便于计算
solar = np.array(solar_output)
wind = np.array(wind_output)
thermal = np.array(thermal_output)
load = np.array(load_demand)
2025-12-27 10:49:32 +08:00
# 初始化输出数组
hours = len(solar_output)
storage_soc = np.zeros(hours) # 储能状态 (MWh)
charge_power = np.zeros(hours) # 充电功率 (MW)
discharge_power = np.zeros(hours) # 放电功率 (MW)
curtailed_wind = np.zeros(hours) # 弃风量 (MW)
curtailed_solar = np.zeros(hours) # 弃光量 (MW)
grid_feed_in = np.zeros(hours) # 上网电量 (MW)
# 设置初始储能状态
storage_soc[0] = initial_soc
2025-12-27 10:49:32 +08:00
# 计算总发电潜力
total_potential_wind = np.sum(wind)
total_potential_solar = np.sum(solar)
# 判断是否只有一种可再生能源
2025-12-27 10:49:32 +08:00
has_wind = total_potential_wind > 0
has_solar = total_potential_solar > 0
single_renewable = (has_wind and not has_solar) or (has_solar and not has_wind)
2025-12-27 10:49:32 +08:00
# 计算允许的最大弃风弃光量
if single_renewable:
# 只有一种可再生能源时,弃电量不受限制
max_curtailed_wind_total = float('inf')
max_curtailed_solar_total = float('inf')
elif params.max_grid_ratio == 0:
# 上网电量限制为0时所有超额电力都必须被弃掉不受弃风弃光限制
max_curtailed_wind_total = float('inf')
max_curtailed_solar_total = float('inf')
else:
# 有多种可再生能源且上网电量限制不为0时应用弃风弃光限制
max_curtailed_wind_total = total_potential_wind * params.max_curtailment_wind
max_curtailed_solar_total = total_potential_solar * params.max_curtailment_solar
2025-12-27 10:49:32 +08:00
# 初始化累计弃风弃光量
accumulated_curtailed_wind = 0.0
accumulated_curtailed_solar = 0.0
2025-12-27 10:49:32 +08:00
# 计算总可用发电量上限(不考虑火电)
total_available_energy = params.available_solar_energy + params.available_wind_energy
max_total_grid_feed_in = total_available_energy * params.max_grid_ratio
2025-12-27 10:49:32 +08:00
# 初始化累计上网电量
cumulative_grid_feed_in = 0.0
2025-12-27 10:49:32 +08:00
# 逐小时计算
for hour in range(hours):
# 确保储能状态不为负且不超过容量
storage_soc[hour] = max(0, min(storage_capacity, storage_soc[hour]))
2025-12-27 10:49:32 +08:00
# 可用发电量(未考虑弃风弃光)
available_generation = thermal[hour] + wind[hour] + solar[hour]
2025-12-27 10:49:32 +08:00
# 需求电量(负荷)
demand = load[hour]
2025-12-27 10:49:32 +08:00
# 计算功率平衡
power_surplus = available_generation - demand
2025-12-27 10:49:32 +08:00
if power_surplus > 0:
# 有盈余电力,优先储能
max_charge = min(
storage_capacity - storage_soc[hour], # 储能空间限制
storage_capacity * params.charge_rate, # 充电功率限制
power_surplus # 可用盈余电力
)
2025-12-27 10:49:32 +08:00
# 实际充电功率
actual_charge = min(max_charge, power_surplus)
charge_power[hour] = actual_charge
2025-12-27 10:49:32 +08:00
# 更新储能状态(考虑充电效率)
if hour < hours - 1:
storage_soc[hour + 1] = storage_soc[hour] + actual_charge * params.storage_efficiency
2025-12-27 10:49:32 +08:00
# 剩余电力优先上网,超出上网电量比例限制时才弃风弃光
remaining_surplus = power_surplus - actual_charge
2025-12-27 10:49:32 +08:00
# 计算当前允许的最大上网电量
# 基于总可用发电量和已累计上网电量
remaining_grid_quota = max_total_grid_feed_in - cumulative_grid_feed_in
2025-12-27 10:49:32 +08:00
# 优先上网,但不超过剩余配额
grid_feed_allowed = min(remaining_surplus, max(0, remaining_grid_quota))
grid_feed_in[hour] = grid_feed_allowed
cumulative_grid_feed_in += grid_feed_allowed
2025-12-27 10:49:32 +08:00
# 剩余电力考虑弃风弃光
remaining_surplus -= grid_feed_allowed
2025-12-27 10:49:32 +08:00
# 计算弃风弃光(优先弃光,然后弃风)
if remaining_surplus > 0:
# 在单一可再生能源场景下,弃风弃光不受限制
if single_renewable:
# 优先弃光
if solar[hour] > 0:
curtailed_solar[hour] = min(solar[hour], remaining_surplus)
remaining_surplus -= curtailed_solar[hour]
accumulated_curtailed_solar += curtailed_solar[hour]
2025-12-27 10:49:32 +08:00
# 如果还有剩余,弃风
if remaining_surplus > 0 and wind[hour] > 0:
curtailed_wind[hour] = min(wind[hour], remaining_surplus)
remaining_surplus -= curtailed_wind[hour]
accumulated_curtailed_wind += curtailed_wind[hour]
else:
# 混合可再生能源场景,弃风弃光受限制
# 计算当前可弃光量
if max_curtailed_solar_total == float('inf'):
# 无限制弃光
available_solar_curtail = solar[hour]
else:
# 受限制弃光
available_solar_curtail = min(
solar[hour],
max_curtailed_solar_total - accumulated_curtailed_solar
)
2025-12-27 10:49:32 +08:00
if available_solar_curtail > 0:
curtailed_solar[hour] = min(available_solar_curtail, remaining_surplus)
remaining_surplus -= curtailed_solar[hour]
accumulated_curtailed_solar += curtailed_solar[hour]
2025-12-27 10:49:32 +08:00
# 如果还有剩余,弃风
if remaining_surplus > 0:
if max_curtailed_wind_total == float('inf'):
# 无限制弃风
available_wind_curtail = wind[hour]
else:
# 受限制弃风
available_wind_curtail = min(
wind[hour],
max_curtailed_wind_total - accumulated_curtailed_wind
)
2025-12-27 10:49:32 +08:00
if available_wind_curtail > 0:
curtailed_wind[hour] = min(available_wind_curtail, remaining_surplus)
remaining_surplus -= curtailed_wind[hour]
accumulated_curtailed_wind += curtailed_wind[hour]
2025-12-27 10:49:32 +08:00
# 确保电力平衡:如果仍有剩余电力,强制弃掉(安全机制)
if remaining_surplus > 0:
# 记录警告但不影响计算
# 在实际系统中,这种情况不应该发生,但作为安全保护
pass
2025-12-27 10:49:32 +08:00
else:
# 电力不足,优先放电
power_deficit = -power_surplus
grid_feed_in[hour] = 0 # 初始化购电为0
2025-12-27 10:49:32 +08:00
max_discharge = min(
storage_soc[hour], # 储能状态限制
storage_capacity * params.discharge_rate, # 放电功率限制
power_deficit # 缺电功率
)
2025-12-27 10:49:32 +08:00
# 实际放电功率
actual_discharge = min(max_discharge, power_deficit)
discharge_power[hour] = actual_discharge
2025-12-27 10:49:32 +08:00
# 更新储能状态(考虑放电效率)
if hour < hours - 1:
storage_soc[hour + 1] = storage_soc[hour] - actual_discharge / params.storage_efficiency
2025-12-27 10:49:32 +08:00
# 计算剩余缺电,需要从电网购电
remaining_deficit = power_deficit - actual_discharge
2025-12-27 10:49:32 +08:00
# 如果还有缺电,从电网购电
if remaining_deficit > 0:
# 购电功率为负值,表示从电网输入
grid_feed_in[hour] = -remaining_deficit
2025-12-27 10:49:32 +08:00
return {
'storage_profile': storage_soc.tolist(),
'charge_profile': charge_power.tolist(),
'discharge_profile': discharge_power.tolist(),
'curtailed_wind': curtailed_wind.tolist(),
'curtailed_solar': curtailed_solar.tolist(),
'grid_feed_in': grid_feed_in.tolist()
}
def find_periodic_steady_state(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
params: SystemParameters,
storage_capacity: float,
soc_convergence_threshold: float = 0.001,
max_iterations: int = 100
) -> Dict[str, List[float]]:
"""
通过迭代找到满足周期性平衡的储能初始状态
步骤
1. 从初始SOC=0开始运行一次全年仿真记录最后一小时的SOC值
2. 将这个SOC值作为新的"初始SOC"再次运行仿真
3. 重复上述过程直到首尾SOC的差值小于设定的阈值
Args:
solar_output: 光伏出力曲线 (MW) - 支持24小时或8760小时
wind_output: 风电出力曲线 (MW) - 支持24小时或8760小时
thermal_output: 火电出力曲线 (MW) - 支持24小时或8760小时
load_demand: 负荷曲线 (MW) - 支持24小时或8760小时
params: 系统参数配置
storage_capacity: 储能容量 (MWh)
soc_convergence_threshold: SOC收敛阈值相对于容量的比例默认0.1%
max_iterations: 最大迭代次数
Returns:
包含各种功率曲线的字典且满足周期性平衡条件
"""
# 计算收敛阈值的绝对值
absolute_threshold = storage_capacity * soc_convergence_threshold
# 初始SOC从0开始
initial_soc = 0.0
iteration = 0
soc_diff = float('inf')
print(f"正在寻找周期性平衡状态SOC收敛阈值: {absolute_threshold:.4f} MWh...")
while iteration < max_iterations and soc_diff > absolute_threshold:
# 运行仿真
balance_result = calculate_energy_balance(
solar_output, wind_output, thermal_output, load_demand,
params, storage_capacity, initial_soc
)
# 获取初始和最终的SOC
storage_initial = balance_result['storage_profile'][0]
storage_final = balance_result['storage_profile'][-1]
# 计算SOC差值
soc_diff = abs(storage_final - storage_initial)
# 更新初始SOC使用最终SOC作为下一次的初始SOC
initial_soc = storage_final
# 确保SOC在合理范围内
initial_soc = max(0, min(storage_capacity, initial_soc))
iteration += 1
# 输出迭代信息每10次迭代或最后一次
if iteration % 10 == 0 or iteration == 1 or soc_diff <= absolute_threshold:
print(f" 迭代 {iteration}: 初始SOC={storage_initial:.4f} MWh, "
f"最终SOC={storage_final:.4f} MWh, 差值={soc_diff:.4f} MWh")
# 输出收敛结果
if soc_diff <= absolute_threshold:
print(f"✓ 周期性平衡收敛成功(迭代{iteration}SOC差值={soc_diff:.4f} MWh")
else:
print(f"⚠ 未达到收敛条件(迭代{iteration}SOC差值={soc_diff:.4f} MWh")
return balance_result
2025-12-27 10:49:32 +08:00
def check_constraints(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
balance_result: Dict[str, List[float]],
params: SystemParameters
) -> Dict[str, float]:
"""
检查约束条件是否满足
2025-12-27 10:49:32 +08:00
Args:
solar_output: 光伏出力曲线 (MW) - 支持24小时或8760小时
wind_output: 风电出力曲线 (MW) - 支持24小时或8760小时
thermal_output: 火电出力曲线 (MW) - 支持24小时或8760小时
balance_result: 电能平衡计算结果
params: 系统参数配置
2025-12-27 10:49:32 +08:00
Returns:
包含各约束实际比例的字典
"""
# 计算总量
total_wind_potential = sum(wind_output)
total_solar_potential = sum(solar_output)
total_thermal = sum(thermal_output)
2025-12-27 10:49:32 +08:00
total_curtailed_wind = sum(balance_result['curtailed_wind'])
total_curtailed_solar = sum(balance_result['curtailed_solar'])
total_grid_feed_in = sum(balance_result['grid_feed_in'])
2025-12-27 10:49:32 +08:00
# 实际发电量(考虑弃风弃光)
actual_wind_generation = total_wind_potential - total_curtailed_wind
actual_solar_generation = total_solar_potential - total_curtailed_solar
total_generation = total_thermal + actual_wind_generation + actual_solar_generation
2025-12-27 10:49:32 +08:00
# 计算比例
actual_curtailment_wind_ratio = total_curtailed_wind / total_wind_potential if total_wind_potential > 0 else 0
actual_curtailment_solar_ratio = total_curtailed_solar / total_solar_potential if total_solar_potential > 0 else 0
actual_grid_feed_in_ratio = total_grid_feed_in / total_generation if total_generation > 0 else 0
2025-12-27 10:49:32 +08:00
return {
'total_curtailment_wind_ratio': actual_curtailment_wind_ratio,
'total_curtailment_solar_ratio': actual_curtailment_solar_ratio,
'total_grid_feed_in_ratio': actual_grid_feed_in_ratio
}
def optimize_storage_capacity(
solar_output: List[float],
wind_output: List[float],
thermal_output: List[float],
load_demand: List[float],
params: SystemParameters,
max_iterations: int = 100,
tolerance: float = 0.01,
search_step: float = 0.01
2025-12-27 10:49:32 +08:00
) -> Dict:
"""
优化储能容量在不超过设定储能容量上限的前提下选择使弃电量最小的储能容量
2025-12-27 10:49:32 +08:00
Args:
solar_output: 光伏出力曲线 (MW) - 支持24小时或8760小时
wind_output: 风电出力曲线 (MW) - 支持24小时或8760小时
thermal_output: 火电出力曲线 (MW) - 支持24小时或8760小时
load_demand: 负荷曲线 (MW) - 支持24小时或8760小时
params: 系统参数配置
max_iterations: 最大迭代次数
tolerance: 收敛容差
search_step: 搜索步长相对于最大容量的比例
2025-12-27 10:49:32 +08:00
Returns:
包含优化结果的字典
"""
# 验证输入
validate_inputs(solar_output, wind_output, thermal_output, load_demand, params)
2025-12-27 10:49:32 +08:00
# 初始化搜索范围
lower_bound = 0.0
theoretical_max = max(sum(solar_output) + sum(wind_output) + sum(thermal_output), sum(load_demand))
2025-12-27 10:49:32 +08:00
# 应用储能容量上限限制
if params.max_storage_capacity is not None:
upper_bound = min(theoretical_max, params.max_storage_capacity)
else:
upper_bound = theoretical_max
print("警告:未设置储能容量上限,将使用理论最大值")
# 判断数据类型24小时或8760小时
data_length = len(solar_output)
is_yearly_data = data_length == 8760
if is_yearly_data:
print(f"处理8760小时全年数据启用周期性平衡优化...")
# 在容量范围内搜索,找到弃电量最小的储能容量
# 使用二分搜索 + 局部搜索相结合的方法
# 首先使用二分搜索找到一个满足约束的基准容量
print("第一阶段:二分搜索寻找满足约束的基准容量...")
2025-12-27 10:49:32 +08:00
best_capacity = upper_bound
best_result = None
best_curtailed = float('inf')
solution_found = False
# 二分搜索寻找最小可行容量
lower_bound_search = lower_bound
upper_bound_search = upper_bound
feasible_capacity = None
2025-12-27 10:49:32 +08:00
for iteration in range(max_iterations):
mid_capacity = (lower_bound_search + upper_bound_search) / 2
2025-12-27 10:49:32 +08:00
# 计算当前容量下的平衡
if is_yearly_data:
balance_result = find_periodic_steady_state(
solar_output, wind_output, thermal_output, load_demand,
params, mid_capacity
)
else:
balance_result = calculate_energy_balance(
solar_output, wind_output, thermal_output, load_demand, params, mid_capacity
)
2025-12-27 10:49:32 +08:00
# 检查约束条件
constraint_results = check_constraints(solar_output, wind_output, thermal_output, balance_result, params)
2025-12-27 10:49:32 +08:00
# 检查是否满足所有约束
total_grid_feed_in = sum(balance_result['grid_feed_in'])
if total_grid_feed_in > 0:
grid_constraint_satisfied = constraint_results['total_grid_feed_in_ratio'] <= params.max_grid_ratio
else:
grid_constraint_satisfied = True
2025-12-27 10:49:32 +08:00
has_wind = sum(wind_output) > 0
has_solar = sum(solar_output) > 0
single_renewable = (has_wind and not has_solar) or (has_solar and not has_wind)
grid_quota_zero = params.max_grid_ratio == 0
2025-12-27 10:49:32 +08:00
if single_renewable or grid_quota_zero:
constraints_satisfied = grid_constraint_satisfied
else:
constraints_satisfied = (
constraint_results['total_curtailment_wind_ratio'] <= params.max_curtailment_wind and
constraint_results['total_curtailment_solar_ratio'] <= params.max_curtailment_solar and
grid_constraint_satisfied
)
2025-12-27 10:49:32 +08:00
# 检查储能日平衡(周期结束时储能状态应接近初始值)
storage_initial = balance_result['storage_profile'][0]
storage_final = balance_result['storage_profile'][-1]
daily_balance = abs(storage_final - storage_initial) < tolerance
2025-12-27 10:49:32 +08:00
if constraints_satisfied and daily_balance:
# 满足条件,尝试减小容量
feasible_capacity = mid_capacity
upper_bound_search = mid_capacity
2025-12-27 10:49:32 +08:00
else:
# 不满足条件,增大容量
lower_bound_search = mid_capacity
2025-12-27 10:49:32 +08:00
# 检查收敛
if upper_bound_search - lower_bound_search < tolerance:
2025-12-27 10:49:32 +08:00
break
# 如果找到了可行解,使用它作为基准;否则使用上限
if feasible_capacity is not None:
print(f"找到基准可行容量: {feasible_capacity:.2f} MWh")
else:
print(f"未找到可行解,使用上限容量: {upper_bound:.2f} MWh")
feasible_capacity = upper_bound
# 第二阶段:在 [feasible_capacity, upper_bound] 范围内搜索弃电量最小的容量
print("\n第二阶段:在可行容量范围内搜索弃电量最小的储能容量...")
# 使用梯度下降方法搜索最优容量
# 定义搜索区间
search_lower = feasible_capacity
search_upper = upper_bound
# 计算当前最小弃电量
best_capacity = feasible_capacity
# 计算基准容量的弃电量
if is_yearly_data:
base_result = find_periodic_steady_state(
solar_output, wind_output, thermal_output, load_demand,
params, best_capacity
)
else:
base_result = calculate_energy_balance(
solar_output, wind_output, thermal_output, load_demand, params, best_capacity
)
base_curtailed = sum(base_result['curtailed_wind']) + sum(base_result['curtailed_solar'])
best_curtailed = base_curtailed
best_result = {**base_result, **check_constraints(solar_output, wind_output, thermal_output, base_result, params)}
print(f"基准容量 {best_capacity:.2f} MWh 的弃电量: {best_curtailed:.2f} MWh")
# 使用黄金分割搜索法寻找最优容量
# 黄金分割点
golden_ratio = (3 - 5**0.5) / 2 # 约0.382
# 初始化两个测试点
a = search_lower
b = search_upper
c = b - golden_ratio * (b - a)
d = a + golden_ratio * (b - a)
max_refinement_iterations = 50
for iter_num in range(max_refinement_iterations):
# 计算点 c 的弃电量
if is_yearly_data:
result_c = find_periodic_steady_state(
solar_output, wind_output, thermal_output, load_demand,
params, c
)
else:
result_c = calculate_energy_balance(
solar_output, wind_output, thermal_output, load_demand, params, c
)
curtailed_c = sum(result_c['curtailed_wind']) + sum(result_c['curtailed_solar'])
# 计算点 d 的弃电量
if is_yearly_data:
result_d = find_periodic_steady_state(
solar_output, wind_output, thermal_output, load_demand,
params, d
)
else:
result_d = calculate_energy_balance(
solar_output, wind_output, thermal_output, load_demand, params, d
)
curtailed_d = sum(result_d['curtailed_wind']) + sum(result_d['curtailed_solar'])
# 比较并更新最优解
if curtailed_c < best_curtailed:
best_curtailed = curtailed_c
best_capacity = c
best_result = {**result_c, **check_constraints(solar_output, wind_output, thermal_output, result_c, params)}
print(f" 发现更优容量: {best_capacity:.2f} MWh, 弃电量: {best_curtailed:.2f} MWh")
if curtailed_d < best_curtailed:
best_curtailed = curtailed_d
best_capacity = d
best_result = {**result_d, **check_constraints(solar_output, wind_output, thermal_output, result_d, params)}
print(f" 发现更优容量: {best_capacity:.2f} MWh, 弃电量: {best_curtailed:.2f} MWh")
# 缩小搜索区间
if curtailed_c < curtailed_d:
b = d
d = c
c = b - golden_ratio * (b - a)
else:
a = c
c = d
d = a + golden_ratio * (b - a)
# 检查收敛
if b - a < tolerance:
print(f"搜索收敛,区间宽度: {b - a:.4f} MWh")
break
# 限制最大迭代次数
if iter_num % 10 == 0 and iter_num > 0:
print(f" 已完成 {iter_num} 次迭代,当前搜索区间: [{a:.2f}, {b:.2f}] MWh")
print(f"\n最终选择储能容量: {best_capacity:.2f} MWh (容量上限: {upper_bound:.2f} MWh)")
print(f"最终弃电量: {best_curtailed:.2f} MWh")
2025-12-27 10:49:32 +08:00
# 添加能量平衡校验
total_generation = sum(thermal_output) + sum(wind_output) + sum(solar_output)
total_consumption = sum(load_demand)
total_curtailed = sum(best_result['curtailed_wind']) + sum(best_result['curtailed_solar'])
total_grid = sum(best_result['grid_feed_in'])
total_charge = sum(best_result['charge_profile'])
total_discharge = sum(best_result['discharge_profile'])
storage_net_change = best_result['storage_profile'][-1] - best_result['storage_profile'][0]
2025-12-27 10:49:32 +08:00
# 能量平衡校验:发电量 + 放电量/效率 = 负荷 + 充电量*效率 + 弃风弃光 + 上网电量
# 考虑储能充放电效率的能量平衡
energy_from_storage = total_discharge / params.storage_efficiency # 储能提供的有效能量
energy_to_storage = total_charge * params.storage_efficiency # 储能消耗的电网能量
2025-12-27 10:49:32 +08:00
# 能量平衡校验应该接近0但允许一定误差
# 当total_grid为负时购电应该加到左侧供给侧
# 当total_grid为正时上网应该加到右侧需求侧
if total_grid < 0: # 购电情况
energy_balance_error = abs(
total_generation + energy_from_storage + abs(total_grid) - total_consumption - energy_to_storage - total_curtailed
)
else: # 上网情况
energy_balance_error = abs(
total_generation + energy_from_storage - total_consumption - energy_to_storage - total_curtailed - total_grid
)
# 使用更大的容差,考虑储能效率损失和数值误差
# 允许误差为总发电量的15%或10MW取较大者
# 储能效率损失可能达到总能量的10%以上
tolerance = max(10.0, total_generation * 0.15)
energy_balance_check = energy_balance_error < tolerance
# 输出周期性平衡信息
if is_yearly_data:
soc_initial_final_diff = abs(best_result['storage_profile'][-1] - best_result['storage_profile'][0])
print(f"\n周期性平衡信息:")
print(f" 初始SOC: {best_result['storage_profile'][0]:.4f} MWh")
print(f" 最终SOC: {best_result['storage_profile'][-1]:.4f} MWh")
print(f" SOC差值: {soc_initial_final_diff:.4f} MWh")
# 最终结果
result = {
2025-12-27 10:49:32 +08:00
'required_storage_capacity': best_capacity,
'storage_profile': best_result['storage_profile'],
'charge_profile': best_result['charge_profile'],
'discharge_profile': best_result['discharge_profile'],
'curtailed_wind': best_result['curtailed_wind'],
'curtailed_solar': best_result['curtailed_solar'],
'grid_feed_in': best_result['grid_feed_in'],
'total_curtailment_wind_ratio': best_result['total_curtailment_wind_ratio'],
'total_curtailment_solar_ratio': best_result['total_curtailment_solar_ratio'],
'total_grid_feed_in_ratio': best_result['total_grid_feed_in_ratio'],
'energy_balance_check': energy_balance_check,
'capacity_limit_reached': params.max_storage_capacity is not None and best_capacity >= params.max_storage_capacity,
'total_curtailed_energy': best_curtailed, # 总弃电量
'min_curtailed_capacity': best_capacity, # 弃电量最小时的储能容量
'max_storage_limit': params.max_storage_capacity,
'optimization_goal': 'minimize_curtailment' # 优化目标:最小化弃电量
2025-12-27 10:49:32 +08:00
}
return result
2025-12-27 10:49:32 +08:00
def main():
"""主函数,提供示例使用"""
# 示例数据
solar_output = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] * 2
wind_output = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
thermal_output = [5.0] * 24
load_demand = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
# 系统参数
params = SystemParameters(
max_curtailment_wind=0.1,
max_curtailment_solar=0.1,
max_grid_ratio=0.2,
storage_efficiency=0.9,
discharge_rate=1.0,
charge_rate=1.0
)
# 计算最优储能容量
result = optimize_storage_capacity(
solar_output, wind_output, thermal_output, load_demand, params
)
# 打印结果
print("多能互补系统储能容量优化结果:")
print(f"所需储能总容量: {result['required_storage_capacity']:.2f} MWh")
print(f"实际弃风率: {result['total_curtailment_wind_ratio']:.3f}")
print(f"实际弃光率: {result['total_curtailment_solar_ratio']:.3f}")
print(f"实际上网电量比例: {result['total_grid_feed_in_ratio']:.3f}")
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
return result
if __name__ == "__main__":
main()