parent
ef0954e86d
commit
fbffecb341
263
1047glys.txt
263
1047glys.txt
|
|
@ -1,263 +0,0 @@
|
||||||
1.33970565959900
|
|
||||||
1.29109217433127
|
|
||||||
1.19028994968253
|
|
||||||
1.19028994968253
|
|
||||||
0.896055384571344
|
|
||||||
1.10714871779409
|
|
||||||
1.27395165341849
|
|
||||||
1.27395165341849
|
|
||||||
0.960070362405688
|
|
||||||
0.960070362405688
|
|
||||||
0.982793723247329
|
|
||||||
0.982793723247329
|
|
||||||
0.982793723247329
|
|
||||||
0.982793723247329
|
|
||||||
1.03037682652431
|
|
||||||
0.950546840812075
|
|
||||||
0.950546840812075
|
|
||||||
0.927295218001612
|
|
||||||
0.927295218001612
|
|
||||||
0.982793723247329
|
|
||||||
0.960070362405688
|
|
||||||
0.960070362405688
|
|
||||||
0.973619668702219
|
|
||||||
0.973619668702219
|
|
||||||
0.956133374872731
|
|
||||||
0.956133374872731
|
|
||||||
0.950546840812075
|
|
||||||
1.40006111531961
|
|
||||||
1.38184262319520
|
|
||||||
1.06188763560293
|
|
||||||
1.15310689954497
|
|
||||||
1.24796702416514
|
|
||||||
1.19028994968253
|
|
||||||
1.19028994968253
|
|
||||||
1.10714871779409
|
|
||||||
1.15257199721567
|
|
||||||
1.25050990019539
|
|
||||||
1.19066238914390
|
|
||||||
1.10029280170729
|
|
||||||
1.22094072493780
|
|
||||||
1.03037682652431
|
|
||||||
1.26241071170120
|
|
||||||
1.46591938806466
|
|
||||||
1.17269176660352
|
|
||||||
1.28995860217369
|
|
||||||
1.14712740491738
|
|
||||||
1.15710711351603
|
|
||||||
1.29778762370819
|
|
||||||
1.13345843504701
|
|
||||||
-1.37340076694502
|
|
||||||
0.912907721612687
|
|
||||||
1.10714871779409
|
|
||||||
0.950546840812075
|
|
||||||
0.950546840812075
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
0.982793723247329
|
|
||||||
0.982793723247329
|
|
||||||
1.09127703480230
|
|
||||||
1.09127703480230
|
|
||||||
1.03037682652431
|
|
||||||
1.03037682652431
|
|
||||||
1.07898715080620
|
|
||||||
1.10714871779409
|
|
||||||
1.21202565652432
|
|
||||||
1.32581766366803
|
|
||||||
1.35212738092095
|
|
||||||
1.33970565959900
|
|
||||||
1.26987609243447
|
|
||||||
1.30454427764397
|
|
||||||
1.17600520709514
|
|
||||||
1.10714871779409
|
|
||||||
1.13838855122436
|
|
||||||
1.19028994968253
|
|
||||||
1.10714871779409
|
|
||||||
1.14416883366802
|
|
||||||
1.14660191889113
|
|
||||||
1.24904577239825
|
|
||||||
1.16590454050981
|
|
||||||
1.17227388112848
|
|
||||||
1.10714871779409
|
|
||||||
1.14416883366802
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.14416883366802
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.21202565652432
|
|
||||||
1.13838855122436
|
|
||||||
1.24904577239825
|
|
||||||
1.10714871779409
|
|
||||||
1.21202565652432
|
|
||||||
1.13838855122436
|
|
||||||
1.16590454050981
|
|
||||||
1.15257199721567
|
|
||||||
1.24904577239825
|
|
||||||
1.21202565652432
|
|
||||||
1.22202532321099
|
|
||||||
1.14660191889113
|
|
||||||
1.16590454050981
|
|
||||||
1.10714871779409
|
|
||||||
1.19028994968253
|
|
||||||
1.24904577239825
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.24904577239825
|
|
||||||
1.21202565652432
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.24904577239825
|
|
||||||
1.17600520709514
|
|
||||||
1.19028994968253
|
|
||||||
1.03037682652431
|
|
||||||
1.10714871779409
|
|
||||||
1.19028994968253
|
|
||||||
1.50673316779942
|
|
||||||
1.17737387614222
|
|
||||||
1.47673509216691
|
|
||||||
1.52431819544389
|
|
||||||
1.10714871779409
|
|
||||||
1.10714871779409
|
|
||||||
1.45945744246823
|
|
||||||
1.43751299806830
|
|
||||||
1.56382779848025
|
|
||||||
-1.48369333516315
|
|
||||||
-1.50444867018198
|
|
||||||
1.34731972565426
|
|
||||||
1.40394116639511
|
|
||||||
1.40394116639511
|
|
||||||
0.891382521387048
|
|
||||||
1.41042088281895
|
|
||||||
1.19028994968253
|
|
||||||
1.27933953231703
|
|
||||||
1.31347261182381
|
|
||||||
1.22318946703899
|
|
||||||
1.18530245986557
|
|
||||||
1.16590454050981
|
|
||||||
0.994421106203713
|
|
||||||
1.20959257130122
|
|
||||||
1.40196442478378
|
|
||||||
1.16956752779005
|
|
||||||
1.32581766366803
|
|
||||||
1.43824479449822
|
|
||||||
1.14683905429100
|
|
||||||
1.24904577239825
|
|
||||||
0.920253080893300
|
|
||||||
1.14751255727424
|
|
||||||
1.27027810246307
|
|
||||||
1.19028994968253
|
|
||||||
1.22075143854975
|
|
||||||
1.25270875967849
|
|
||||||
1.19780860499484
|
|
||||||
1.16829688044339
|
|
||||||
1.19028994968253
|
|
||||||
1.31019393504756
|
|
||||||
1.15530423085401
|
|
||||||
1.12013500071426
|
|
||||||
0
|
|
||||||
0
|
|
||||||
1.10714871779409
|
|
||||||
1.19595561143930
|
|
||||||
1.24904577239825
|
|
||||||
1.23629600792211
|
|
||||||
1.55359900515355
|
|
||||||
0.551654982528547
|
|
||||||
-1.35264902928261
|
|
||||||
-1.47750070505462
|
|
||||||
-1.55986780014151
|
|
||||||
1.56783775554554
|
|
||||||
1.53458028472249
|
|
||||||
1.52136665855276
|
|
||||||
-1.53064574945385
|
|
||||||
-1.53452622064889
|
|
||||||
1.48253068881009
|
|
||||||
-1.55772517584471
|
|
||||||
-1.56150866816053
|
|
||||||
-1.29249666778979
|
|
||||||
1.46821647437660
|
|
||||||
1.54845367659476
|
|
||||||
-1.45401173132527
|
|
||||||
-1.34074192865812
|
|
||||||
-1.37340076694502
|
|
||||||
1.44435582953651
|
|
||||||
1.31712223065625
|
|
||||||
1.28474488507758
|
|
||||||
1.00148313569423
|
|
||||||
1.08631839775787
|
|
||||||
1.06369782240256
|
|
||||||
1.13416916698136
|
|
||||||
1.15257199721567
|
|
||||||
1.22202532321099
|
|
||||||
1.01504060568258
|
|
||||||
1.29469930739946
|
|
||||||
0
|
|
||||||
1.12692015240925
|
|
||||||
1.52205447548497
|
|
||||||
1.15257199721567
|
|
||||||
1.21202565652432
|
|
||||||
-1.35212738092095
|
|
||||||
-1.51585168468834
|
|
||||||
-1.37340076694502
|
|
||||||
0
|
|
||||||
1.40411096215343
|
|
||||||
-1.50695625567519
|
|
||||||
-1.48790067446930
|
|
||||||
-1.53747533091665
|
|
||||||
1.56421747434188
|
|
||||||
-1.34399747874101
|
|
||||||
-1.47713180509594
|
|
||||||
-1.35212738092095
|
|
||||||
1.22524074621318
|
|
||||||
1.19028994968253
|
|
||||||
1.35673564323108
|
|
||||||
1.47112767430373
|
|
||||||
1.37340076694502
|
|
||||||
1.11816755556904
|
|
||||||
1.16590454050981
|
|
||||||
1.16590454050981
|
|
||||||
1.23755202568322
|
|
||||||
1.48765509490646
|
|
||||||
1.27933953231703
|
|
||||||
1.21202565652432
|
|
||||||
1.10714871779409
|
|
||||||
-1.35970299357215
|
|
||||||
-1.49556171333028
|
|
||||||
-1.51406713708914
|
|
||||||
-1.52340101694294
|
|
||||||
-1.52705320464371
|
|
||||||
-1.51277025340232
|
|
||||||
-1.35147185823543
|
|
||||||
-1.37340076694502
|
|
||||||
0
|
|
||||||
1.19028994968253
|
|
||||||
1.52915374769631
|
|
||||||
1.15710711351603
|
|
||||||
1.07144960511477
|
|
||||||
1.10714871779409
|
|
||||||
1.20473981094748
|
|
||||||
1.14416883366802
|
|
||||||
1.10714871779409
|
|
||||||
1.24904577239825
|
|
||||||
0.689800044733608
|
|
||||||
-1.40873215532908
|
|
||||||
1.38932862340040
|
|
||||||
-1.36415687581762
|
|
||||||
-1.53198088071343
|
|
||||||
1.26491745539004
|
|
||||||
-1.50857146559402
|
|
||||||
-1.42469761624386
|
|
||||||
-0.708626272127670
|
|
||||||
1.15257199721567
|
|
||||||
0.376490334446523
|
|
||||||
0.785398163397448
|
|
||||||
1.23709415025735
|
|
||||||
1.24904577239825
|
|
||||||
1.07248053258459
|
|
||||||
1.23817663522098
|
|
||||||
-1.40564764938027
|
|
||||||
175
300glys.txt
175
300glys.txt
|
|
@ -1,175 +0,0 @@
|
||||||
1.23291813855462
|
|
||||||
1.20658322161057
|
|
||||||
1.05033787734375
|
|
||||||
0.969614214282690
|
|
||||||
1.08754338693689
|
|
||||||
0.934288111006946
|
|
||||||
0.844529150229879
|
|
||||||
-1.36643570544773
|
|
||||||
-0.188221505304771
|
|
||||||
-0.551654982528547
|
|
||||||
-0.512210280954117
|
|
||||||
-1.52225150040607
|
|
||||||
-1.33506914456117
|
|
||||||
-0.940520438838179
|
|
||||||
1.39408747072486
|
|
||||||
1.44533268525224
|
|
||||||
1.23898098497191
|
|
||||||
1.55052883208268
|
|
||||||
-0.977333716837938
|
|
||||||
1.28780248391596
|
|
||||||
-1.24153476662545
|
|
||||||
1.23732755879586
|
|
||||||
1.23577221571408
|
|
||||||
1.22918083614709
|
|
||||||
1.22918083614709
|
|
||||||
1.23605948947808
|
|
||||||
1.23829349860715
|
|
||||||
1.23955238671760
|
|
||||||
1.23555911423838
|
|
||||||
1.23465827600933
|
|
||||||
1.25201900446950
|
|
||||||
1.23939976933058
|
|
||||||
1.23861741348096
|
|
||||||
1.23721200529510
|
|
||||||
1.23797611386815
|
|
||||||
1.25656442771056
|
|
||||||
0.916713602380536
|
|
||||||
1.24024834540447
|
|
||||||
1.24024834540447
|
|
||||||
1.25299832098500
|
|
||||||
1.23899585950522
|
|
||||||
1.24156461521103
|
|
||||||
1.14967625241387
|
|
||||||
1.35141207346069
|
|
||||||
1.40006111531961
|
|
||||||
1.21202565652432
|
|
||||||
1.19706950682934
|
|
||||||
1.29412798771300
|
|
||||||
1.31019393504756
|
|
||||||
1.38457348638376
|
|
||||||
1.14046971367234
|
|
||||||
1.52734543140337
|
|
||||||
1.49948886200961
|
|
||||||
1.11821837632420
|
|
||||||
1.22777238637419
|
|
||||||
1.32581766366803
|
|
||||||
1.32971519404381
|
|
||||||
1.40868959941175
|
|
||||||
1.08389709498363
|
|
||||||
1.49948886200961
|
|
||||||
0.982793723247329
|
|
||||||
1.16590454050981
|
|
||||||
1.29560707766573
|
|
||||||
0
|
|
||||||
1.26190421578122
|
|
||||||
1.16851261966004
|
|
||||||
1.16590454050981
|
|
||||||
0.953821044664279
|
|
||||||
1.21663202730047
|
|
||||||
1.47112767430373
|
|
||||||
1.45004167672759
|
|
||||||
1.18482395118491
|
|
||||||
1.18482395118491
|
|
||||||
1.46283330655614
|
|
||||||
1.48103815260495
|
|
||||||
1.24049897196564
|
|
||||||
1.24174663195456
|
|
||||||
1.24117191937415
|
|
||||||
1.24904577239825
|
|
||||||
0.976229266118710
|
|
||||||
1.24117191937415
|
|
||||||
1.03288728150139
|
|
||||||
1.18224992192327
|
|
||||||
1.07407254991928
|
|
||||||
1.26182248128073
|
|
||||||
1.04249077137011
|
|
||||||
1.21202565652432
|
|
||||||
1.12103671372506
|
|
||||||
1.07222842115668
|
|
||||||
1.21793722425015
|
|
||||||
1.33394756584798
|
|
||||||
1.25979804618936
|
|
||||||
-1.14253217391824
|
|
||||||
1.37008732645341
|
|
||||||
1.13684295740100
|
|
||||||
-0.785398163397448
|
|
||||||
1.47112767430373
|
|
||||||
1.11955942808299
|
|
||||||
1.16590454050981
|
|
||||||
1.09567694572032
|
|
||||||
1.46835247328777
|
|
||||||
1.55284953590561
|
|
||||||
1.35945592748700
|
|
||||||
1.41151231491861
|
|
||||||
1.25231017864814
|
|
||||||
1.43170038531283
|
|
||||||
1.19028994968253
|
|
||||||
1.16164017403482
|
|
||||||
1.19302966885508
|
|
||||||
1.32581766366803
|
|
||||||
-1.37651699244531
|
|
||||||
1.10714871779409
|
|
||||||
0.896055384571344
|
|
||||||
1.19729918068842
|
|
||||||
1.29249666778979
|
|
||||||
1.25603866540359
|
|
||||||
1.15257199721567
|
|
||||||
1.24904577239825
|
|
||||||
0
|
|
||||||
1.40564764938027
|
|
||||||
1.29249666778979
|
|
||||||
0.942000040379464
|
|
||||||
1.06550613869550
|
|
||||||
0.938378508000418
|
|
||||||
1.05102793509291
|
|
||||||
1.47354312854333
|
|
||||||
0.984866259139967
|
|
||||||
1.12395385830913
|
|
||||||
1.04199070618589
|
|
||||||
1.16590454050981
|
|
||||||
1.12103671372506
|
|
||||||
1.25347332094928
|
|
||||||
1.30908282439369
|
|
||||||
1.37178525946514
|
|
||||||
1.55781004387472
|
|
||||||
1.24904577239825
|
|
||||||
1.46213511095431
|
|
||||||
1.45518514756301
|
|
||||||
1.34399747874101
|
|
||||||
1.29537022309886
|
|
||||||
1.14416883366802
|
|
||||||
1.36947921842026
|
|
||||||
1.25422707318249
|
|
||||||
1.24904577239825
|
|
||||||
1.28700221758657
|
|
||||||
0.0216889061692343
|
|
||||||
1.30084542593131
|
|
||||||
1.51933590773475
|
|
||||||
1.47393650956969
|
|
||||||
1.31362314621978
|
|
||||||
1.13013317523554
|
|
||||||
1.18497641785263
|
|
||||||
1.33641158257326
|
|
||||||
1.27933953231703
|
|
||||||
0.927295218001612
|
|
||||||
1.23334025756712
|
|
||||||
1.16759372809238
|
|
||||||
1.11372757024711
|
|
||||||
1.11372757024711
|
|
||||||
1.25603866540359
|
|
||||||
1.32298481005619
|
|
||||||
1.42316045427414
|
|
||||||
1.26384953610358
|
|
||||||
1.19318290207484
|
|
||||||
1.04272187836854
|
|
||||||
1.39122066265548
|
|
||||||
1.25374057358575
|
|
||||||
0.978452216516076
|
|
||||||
1.20906708527496
|
|
||||||
1.48294017056526
|
|
||||||
1.22102790509537
|
|
||||||
1.28315368548254
|
|
||||||
1.21073699744384
|
|
||||||
1.49800847819097
|
|
||||||
1.23691847280296
|
|
||||||
32
5sj.txt
32
5sj.txt
|
|
@ -1,32 +0,0 @@
|
||||||
5 5 1. 50 .1
|
|
||||||
1.e-5 2
|
|
||||||
1 5
|
|
||||||
0
|
|
||||||
1 1 2 0.04 0.25 0.25
|
|
||||||
2 1 3 0.1 0.35 0
|
|
||||||
3 2 3 0.08 0.30 0.25
|
|
||||||
0
|
|
||||||
0
|
|
||||||
1 2 4 0 0.015 1.05 1 1.06
|
|
||||||
2 3 5 0 0.03 1.05 1 1.06
|
|
||||||
0
|
|
||||||
1 0 0 1.6 0.8
|
|
||||||
2 0 0 2 1
|
|
||||||
3 0 0 3.7 1.3
|
|
||||||
4 5 0 0 0
|
|
||||||
5 0 0 0 0
|
|
||||||
0
|
|
||||||
4 1.05 -3 3
|
|
||||||
5 1.05 -2.1 5
|
|
||||||
0
|
|
||||||
4 1200.6485 200.4335 50.439 1 8
|
|
||||||
5 1857.201 500.746 200.55 1 8
|
|
||||||
0
|
|
||||||
1 1 2 2
|
|
||||||
2 1 3 0.65
|
|
||||||
3 2 3 2
|
|
||||||
4 2 4 6
|
|
||||||
5 3 5 5
|
|
||||||
0
|
|
||||||
0
|
|
||||||
0
|
|
||||||
13
CalCost.m
13
CalCost.m
|
|
@ -1,13 +0,0 @@
|
||||||
function CalCost(GenC,PG,PGi)
|
|
||||||
cost=GenC(:,2).*PG(PGi).^2+GenC(:,3).*PG(PGi)+GenC(:,4);
|
|
||||||
% Org_PG=[5;
|
|
||||||
% 2.5794];
|
|
||||||
% book_PG=[5.5056;
|
|
||||||
% 2.1568];
|
|
||||||
% cost2=GenC(:,2).*Org_PG(1:2).^2+GenC(:,3).*Org_PG(1:2)+GenC(:,4);
|
|
||||||
% cost3=GenC(:,2).*book_PG(1:2).^2+GenC(:,3).*book_PG(1:2)+GenC(:,4);
|
|
||||||
fprintf('总花费为%f\n',sum(cost,1));
|
|
||||||
% fprintf('PF总花费为%f\n',sum(cost2,1));
|
|
||||||
% fprintf('书上OPF总花费为%f\n',sum(cost3,1));
|
|
||||||
% fprintf('较书上减少费用为为%f\n',sum(cost3,1)-sum(cost,1));
|
|
||||||
end
|
|
||||||
|
|
@ -1,6 +0,0 @@
|
||||||
function DrawGap(plotGap)
|
|
||||||
x=find(plotGap);
|
|
||||||
ts=size(x,2);
|
|
||||||
plot(1:ts,plotGap(1:ts));
|
|
||||||
|
|
||||||
end
|
|
||||||
3515
IEEE1047.dat
3515
IEEE1047.dat
File diff suppressed because it is too large
Load Diff
3516
IEEE10471.dat
3516
IEEE10471.dat
File diff suppressed because it is too large
Load Diff
3516
IEEE10471PG.dat
3516
IEEE10471PG.dat
File diff suppressed because it is too large
Load Diff
398
IEEE118.dat
398
IEEE118.dat
|
|
@ -1,398 +0,0 @@
|
||||||
118 179 100 28 0.1
|
|
||||||
1.e-5 2
|
|
||||||
1 69
|
|
||||||
0
|
|
||||||
1 1 2 0.0303 0.0999 0.0127
|
|
||||||
2 1 3 0.0129 0.0424 0.00541
|
|
||||||
3 4 5 0.00176 0.00798 0.00105
|
|
||||||
4 3 5 0.0241 0.1080 0.0142
|
|
||||||
5 5 6 0.0119 0.0540 0.00713
|
|
||||||
6 6 7 0.00459 0.0208 0.00275
|
|
||||||
7 8 9 0.00244 0.0305 0.5810
|
|
||||||
9 9 10 0.00258 0.0322 0.6150
|
|
||||||
10 4 11 0.0209 0.0688 0.00874
|
|
||||||
11 5 11 0.0203 0.0682 0.00869
|
|
||||||
12 11 12 0.00595 0.0196 0.00251
|
|
||||||
13 2 12 0.0187 0.0616 0.00786
|
|
||||||
14 3 12 0.0484 0.1600 0.0203
|
|
||||||
15 7 12 0.00862 0.0340 0.00437
|
|
||||||
16 11 13 0.02225 0.0731 0.00938
|
|
||||||
17 12 14 0.0215 0.0707 0.00908
|
|
||||||
18 13 15 0.0744 0.2444 0.03134
|
|
||||||
19 14 15 0.0595 0.1950 0.0251
|
|
||||||
20 12 16 0.0212 0.0834 0.0107
|
|
||||||
21 15 17 0.0132 0.0437 0.0222
|
|
||||||
22 16 17 0.0454 0.1801 0.0233
|
|
||||||
23 17 18 0.0123 0.0505 0.00649
|
|
||||||
24 18 19 0.01119 0.0493 0.00571
|
|
||||||
25 19 20 0.0252 0.1170 0.0149
|
|
||||||
26 15 19 0.0120 0.0394 0.00505
|
|
||||||
27 20 21 0.0183 0.0849 0.0108
|
|
||||||
28 21 22 0.0209 0.0970 0.0123
|
|
||||||
29 22 23 0.0342 0.1590 0.0202
|
|
||||||
30 23 24 0.0135 0.0492 0.0249
|
|
||||||
31 23 25 0.0156 0.0800 0.0432
|
|
||||||
33 25 27 0.0318 0.1630 0.0882
|
|
||||||
34 27 28 0.01913 0.0855 0.0108
|
|
||||||
35 28 29 0.0237 0.0943 0.0119
|
|
||||||
37 8 30 0.00431 0.0504 0.2570
|
|
||||||
38 26 30 0.00799 0.0860 0.4540
|
|
||||||
39 17 31 0.0474 0.1563 0.01995
|
|
||||||
40 29 31 0.0108 0.0331 0.00415
|
|
||||||
41 23 32 0.0317 0.1153 0.05865
|
|
||||||
42 31 32 0.0298 0.0985 0.01255
|
|
||||||
43 27 32 0.0229 0.0755 0.00963
|
|
||||||
44 15 33 0.0380 0.1244 0.01597
|
|
||||||
45 19 34 0.0752 0.2470 0.0316
|
|
||||||
46 35 36 0.00224 0.0102 0.00124
|
|
||||||
47 35 37 0.0110 0.0497 0.00659
|
|
||||||
48 33 37 0.0415 0.1420 0.0183
|
|
||||||
49 34 36 0.00871 0.0268 0.00284
|
|
||||||
50 34 37 0.00256 0.0094 0.00429
|
|
||||||
52 37 39 0.0321 0.1060 0.0135
|
|
||||||
53 37 40 0.0593 0.1680 0.0210
|
|
||||||
54 30 38 0.00464 0.0540 0.2110
|
|
||||||
55 39 40 0.0184 0.0605 0.00776
|
|
||||||
56 40 41 0.0145 0.0487 0.00611
|
|
||||||
57 40 42 0.0555 0.1830 0.0233
|
|
||||||
58 41 42 0.0410 0.1350 0.0172
|
|
||||||
59 43 44 0.0608 0.2454 0.03034
|
|
||||||
60 34 43 0.0413 0.1681 0.02113
|
|
||||||
61 44 45 0.0224 0.0901 0.0112
|
|
||||||
62 45 46 0.0400 0.1356 0.0166
|
|
||||||
63 46 47 0.0380 0.1270 0.0158
|
|
||||||
64 46 48 0.0601 0.1890 0.0236
|
|
||||||
65 47 49 0.0191 0.0625 0.00802
|
|
||||||
66 42 49 0.03575 0.1615 0.0860
|
|
||||||
67 45 49 0.0684 0.1860 0.0222
|
|
||||||
68 48 49 0.0179 0.0505 0.00629
|
|
||||||
69 49 50 0.0267 0.0752 0.00937
|
|
||||||
70 49 51 0.0486 0.1370 0.0171
|
|
||||||
71 51 52 0.0203 0.0588 0.00698
|
|
||||||
72 52 53 0.0405 0.1635 0.02029
|
|
||||||
73 53 54 0.0263 0.1220 0.0155
|
|
||||||
74 49 54 0.03976 0.1450 0.0734
|
|
||||||
75 54 55 0.0169 0.0707 0.0101
|
|
||||||
76 54 56 0.00275 0.00955 0.00366
|
|
||||||
77 55 56 0.00488 0.0151 0.00187
|
|
||||||
78 56 57 0.0343 0.0966 0.0121
|
|
||||||
79 50 57 0.0474 0.1340 0.0166
|
|
||||||
80 56 58 0.0343 0.0966 0.0121
|
|
||||||
81 51 58 0.0255 0.0719 0.00894
|
|
||||||
82 54 59 0.0503 0.2293 0.0299
|
|
||||||
83 56 59 0.04069 0.12243 0.05525
|
|
||||||
84 55 59 0.04739 0.2158 0.02823
|
|
||||||
85 59 60 0.0317 0.1450 0.0188
|
|
||||||
86 59 61 0.0328 0.1500 0.0194
|
|
||||||
87 60 61 0.00264 0.0135 0.00728
|
|
||||||
88 60 62 0.0123 0.0561 0.00734
|
|
||||||
89 61 62 0.00824 0.0376 0.0049
|
|
||||||
91 63 64 0.00172 0.0200 0.1080
|
|
||||||
93 38 65 0.00901 0.0986 0.5230
|
|
||||||
94 64 65 0.00269 0.0302 0.1900
|
|
||||||
95 49 66 0.0090 0.04595 0.0248
|
|
||||||
96 62 66 0.0482 0.2180 0.0289
|
|
||||||
97 62 67 0.0258 0.1170 0.0155
|
|
||||||
99 66 67 0.0224 0.1015 0.01341
|
|
||||||
100 65 68 0.00138 0.0160 0.3190
|
|
||||||
101 47 69 0.0844 0.2778 0.03546
|
|
||||||
102 49 69 0.0985 0.3240 0.0414
|
|
||||||
104 69 70 0.0300 0.1270 0.0610
|
|
||||||
105 24 70 0.10221 0.4115 0.05099
|
|
||||||
106 70 71 0.00882 0.0355 0.00439
|
|
||||||
107 24 72 0.0488 0.1960 0.0244
|
|
||||||
108 71 72 0.0446 0.1800 0.02222
|
|
||||||
109 71 73 0.00866 0.0454 0.00589
|
|
||||||
110 70 74 0.0401 0.1323 0.01684
|
|
||||||
111 70 75 0.0428 0.1410 0.0180
|
|
||||||
112 69 75 0.0405 0.1220 0.0620
|
|
||||||
113 74 75 0.0123 0.0406 0.00517
|
|
||||||
114 76 77 0.0444 0.1480 0.0184
|
|
||||||
115 69 77 0.0309 0.1010 0.0519
|
|
||||||
116 75 77 0.0601 0.1999 0.02489
|
|
||||||
117 77 78 0.00376 0.0124 0.00632
|
|
||||||
118 78 79 0.00546 0.0244 0.00324
|
|
||||||
119 77 80 0.01077 0.03318 0.0350
|
|
||||||
120 79 80 0.0156 0.0704 0.00945
|
|
||||||
121 68 81 0.00175 0.0202 0.4040
|
|
||||||
123 77 82 0.0298 0.0853 0.04087
|
|
||||||
124 82 83 0.0112 0.03665 0.01898
|
|
||||||
125 83 84 0.0625 0.1320 0.0129
|
|
||||||
126 83 85 0.0430 0.1480 0.0174
|
|
||||||
127 84 85 0.0302 0.0641 0.00617
|
|
||||||
128 85 86 0.0350 0.1230 0.0138
|
|
||||||
129 86 87 0.02828 0.2074 0.02225
|
|
||||||
130 85 88 0.0200 0.1020 0.0138
|
|
||||||
131 85 89 0.0239 0.1730 0.0235
|
|
||||||
132 88 89 0.0139 0.0712 0.00969
|
|
||||||
133 89 90 0.01631 0.06515 0.0794
|
|
||||||
134 90 91 0.0254 0.0836 0.0107
|
|
||||||
135 89 92 0.00791 0.03827 0.0481
|
|
||||||
136 91 92 0.0387 0.1272 0.01634
|
|
||||||
137 92 93 0.0258 0.0848 0.0109
|
|
||||||
138 92 94 0.0481 0.1580 0.0203
|
|
||||||
139 93 94 0.0223 0.0732 0.00938
|
|
||||||
140 94 95 0.0132 0.0434 0.00555
|
|
||||||
141 80 96 0.0356 0.1820 0.0247
|
|
||||||
142 82 96 0.0162 0.0530 0.0272
|
|
||||||
143 94 96 0.0269 0.0869 0.0115
|
|
||||||
144 80 97 0.0183 0.0934 0.0127
|
|
||||||
145 80 98 0.0238 0.1080 0.0143
|
|
||||||
146 80 99 0.0454 0.2060 0.0273
|
|
||||||
148 94 100 0.0178 0.0580 0.0302
|
|
||||||
149 95 96 0.0171 0.0547 0.00737
|
|
||||||
150 96 97 0.0173 0.0885 0.0120
|
|
||||||
151 98 100 0.0397 0.1790 0.0238
|
|
||||||
152 99 100 0.0180 0.0813 0.0108
|
|
||||||
153 100 101 0.0277 0.1262 0.0164
|
|
||||||
154 92 102 0.0123 0.0559 0.00732
|
|
||||||
155 101 102 0.0246 0.1120 0.0147
|
|
||||||
156 100 103 0.0160 0.0525 0.0268
|
|
||||||
157 100 104 0.0451 0.2040 0.02705
|
|
||||||
158 103 104 0.0466 0.1584 0.02035
|
|
||||||
159 103 105 0.0535 0.1625 0.0204
|
|
||||||
160 100 106 0.0605 0.2290 0.0310
|
|
||||||
161 104 105 0.00994 0.0378 0.00493
|
|
||||||
162 105 106 0.0140 0.0547 0.00717
|
|
||||||
163 105 107 0.0530 0.1830 0.0236
|
|
||||||
164 105 108 0.0261 0.0703 0.09222
|
|
||||||
166 108 109 0.0105 0.0288 0.0038
|
|
||||||
167 103 110 0.03906 0.1813 0.02305
|
|
||||||
168 109 110 0.0278 0.0762 0.0101
|
|
||||||
169 110 111 0.0220 0.0755 0.0100
|
|
||||||
170 110 112 0.0247 0.0640 0.0310
|
|
||||||
171 17 113 0.00913 0.0301 0.00384
|
|
||||||
172 32 113 0.0615 0.2030 0.0259
|
|
||||||
173 32 114 0.0135 0.0612 0.00814
|
|
||||||
174 27 115 0.0164 0.0741 0.00986
|
|
||||||
175 114 115 0.0023 0.0104 0.00138
|
|
||||||
176 68 116 0.00034 0.00405 0.0820
|
|
||||||
177 12 117 0.0329 0.1400 0.0179
|
|
||||||
178 75 118 0.01450 0.04810 0.00599
|
|
||||||
179 76 118 0.0164 0.0544 0.00678
|
|
||||||
0
|
|
||||||
5 -0.4
|
|
||||||
17 0.
|
|
||||||
34 .14
|
|
||||||
37 -0.25
|
|
||||||
44 .1
|
|
||||||
45 .1
|
|
||||||
46 .1
|
|
||||||
48 .15
|
|
||||||
74 .12
|
|
||||||
79 .2
|
|
||||||
82 .2
|
|
||||||
83 .1
|
|
||||||
105 .2
|
|
||||||
107 .06
|
|
||||||
110 .06
|
|
||||||
0
|
|
||||||
1 8 5 0.0 0.0267 0.9850 0.9 1.1
|
|
||||||
2 25 26 0.0 0.0382 0.9600 0.9 1.1
|
|
||||||
3 17 30 0.0 0.0388 0.9600 0.9 1.1
|
|
||||||
4 37 38 0.0 0.0375 0.9350 0.9 1.1
|
|
||||||
5 59 63 0.0 0.0386 0.9600 0.9 1.1
|
|
||||||
6 61 64 0.0 0.0268 0.9850 0.9 1.1
|
|
||||||
7 65 66 0.0 0.0370 0.9350 0.9 1.1
|
|
||||||
8 68 69 0.0 0.0370 0.9350 0.9 1.1
|
|
||||||
9 80 81 0.0 0.0370 0.9350 0.9 1.1
|
|
||||||
10 92 100 0.0648 0.2950 1. 0.9 1.1
|
|
||||||
11 106 107 0.0530 0.1830 1. 0.9 1.1
|
|
||||||
0
|
|
||||||
1 0. 0. 51. 27.
|
|
||||||
2 0. 0. 20. 9.
|
|
||||||
3 0. 0. 39. 10.
|
|
||||||
4 -9. 0. 30. 12.
|
|
||||||
5 0. 0. 0. 0.
|
|
||||||
6 0. 0. 52. 22.
|
|
||||||
7 0. 0. 19. 2.
|
|
||||||
8 -28. 0. 0. 0.
|
|
||||||
9 0. 0. 0. 0.
|
|
||||||
10 450. 0. 0. 0.
|
|
||||||
11 0. 0. 70. 23.
|
|
||||||
12 85. 0. 47. 10.
|
|
||||||
13 0. 0. 34. 16.
|
|
||||||
14 0. 0. 14. 1.
|
|
||||||
15 0. 0. 90. 30.
|
|
||||||
16 0. 0. 25. 10.
|
|
||||||
17 0. 0. 11. 3.
|
|
||||||
18 0. 0. 60. 34.
|
|
||||||
19 0. 0. 45. 25.
|
|
||||||
20 0. 0. 18. 3.
|
|
||||||
21 0. 0. 14. 8.
|
|
||||||
22 0. 0. 10. 5.
|
|
||||||
23 0. 0. 7. 3.
|
|
||||||
24 -13. 0. 0. 0.
|
|
||||||
25 220. 0. 0. 0.
|
|
||||||
26 314. 0. 0. 0.
|
|
||||||
27 -9. 0. 62. 13.
|
|
||||||
28 0. 0. 17. 7.
|
|
||||||
29 0. 0. 24. 4.
|
|
||||||
30 0. 0. 0. 0.
|
|
||||||
31 7. 0. 43. 27.
|
|
||||||
32 0. 0. 59. 23.
|
|
||||||
33 0. 0. 23. 9.
|
|
||||||
34 0. 0. 59. 26.
|
|
||||||
35 0. 0. 33. 9.
|
|
||||||
36 0. 0. 31. 17.
|
|
||||||
37 0. 0. 0. 0.
|
|
||||||
38 0. 0. 0. 0.
|
|
||||||
39 0. 0. 27. 11.
|
|
||||||
40 -46. 0. 20. 23.
|
|
||||||
41 0. 0. 37. 10.
|
|
||||||
42 -59. 0. 37. 23.
|
|
||||||
43 0. 0. 18. 7.
|
|
||||||
44 0. 0. 16. 8.
|
|
||||||
45 0. 0. 53. 22.
|
|
||||||
46 19. 0. 28. 10.
|
|
||||||
47 0. 0. 34. 0.
|
|
||||||
48 0. 0. 20. 11.
|
|
||||||
49 204. 0. 87. 30.
|
|
||||||
50 0. 0. 17. 4.
|
|
||||||
51 0. 0. 17. 8.
|
|
||||||
52 0. 0. 18. 5.
|
|
||||||
53 0. 0. 23. 11.
|
|
||||||
54 48. 0. 113. 32.
|
|
||||||
55 0. 0. 63. 22.
|
|
||||||
56 0. 0. 84. 18.
|
|
||||||
57 0. 0. 12. 3.
|
|
||||||
58 0. 0. 12. 3.
|
|
||||||
59 155. 0. 277. 113.
|
|
||||||
60 0. 0. 78. 3.
|
|
||||||
61 160. 0. 0. 0.
|
|
||||||
62 0. 0. 77. 14.
|
|
||||||
63 0. 0. 0. 0.
|
|
||||||
64 0. 0. 0. 0.
|
|
||||||
65 391. 0. 0. 0.
|
|
||||||
66 392. 0. 39. 18.
|
|
||||||
67 0. 0. 28. 7.
|
|
||||||
68 0. 0. 0. 0.
|
|
||||||
69 516.4 0. 0. 0.
|
|
||||||
70 0. 0. 66. 20.
|
|
||||||
71 0. 0. 0. 0.
|
|
||||||
72 -12. 0. 0. 0.
|
|
||||||
73 -6. 0. 0. 0.
|
|
||||||
74 0. 0. 68. 27.
|
|
||||||
75 0. 0. 47. 11.
|
|
||||||
76 0. 0. 68. 36.
|
|
||||||
77 0. 0. 61. 28.
|
|
||||||
78 0. 0. 71. 26.
|
|
||||||
79 0. 0. 39. 32.
|
|
||||||
80 477. 0. 130. 26.
|
|
||||||
81 0. 0. 0. 0.
|
|
||||||
82 0. 0. 54. 27.
|
|
||||||
83 0. 0. 20. 10.
|
|
||||||
84 0. 0. 11. 7.
|
|
||||||
85 0. 0. 24. 15.
|
|
||||||
86 0. 0. 21. 10.
|
|
||||||
87 4. 0. 0. 0.
|
|
||||||
88 0. 0. 48. 10.
|
|
||||||
89 607. 0. 0. 0.
|
|
||||||
90 -85. 0. 78. 42.
|
|
||||||
91 -10. 0. 0. 0.
|
|
||||||
92 0. 0. 65. 10.
|
|
||||||
93 0. 0. 12. 7.
|
|
||||||
94 0. 0. 30. 16.
|
|
||||||
95 0. 0. 42. 31.
|
|
||||||
96 0. 0. 38. 15.
|
|
||||||
97 0. 0. 15. 9.
|
|
||||||
98 0. 0. 34. 8.
|
|
||||||
99 -42. 0. 0. 0.
|
|
||||||
100 252. 0. 37. 18.
|
|
||||||
101 0. 0. 22. 15.
|
|
||||||
102 0. 0. 5. 3.
|
|
||||||
103 40. 0. 23. 16.
|
|
||||||
104 0. 0. 38. 25.
|
|
||||||
105 0. 0. 31. 26.
|
|
||||||
106 0. 0. 43. 16.
|
|
||||||
107 -22. 0. 28. 12.
|
|
||||||
108 0. 0. 2. 1.
|
|
||||||
109 0. 0. 8. 3.
|
|
||||||
110 0. 0. 39. 30.
|
|
||||||
111 36. 0. 0. 0.
|
|
||||||
112 -43. 0. 25. 13.
|
|
||||||
113 -6. 0. 0. 0.
|
|
||||||
114 0. 0. 8. 3.
|
|
||||||
115 0. 0. 22. 7.
|
|
||||||
116 -184. 0. 0. 0.
|
|
||||||
117 0. 0. 20. 8.
|
|
||||||
118 0. 0. 33. 15.
|
|
||||||
0
|
|
||||||
1 .955 -5. 15.
|
|
||||||
4 .998 -300. 300.
|
|
||||||
6 .99 -13. 50.
|
|
||||||
8 1.015 -300. 300.
|
|
||||||
10 1.05 -147. 200.
|
|
||||||
12 .99 -35. 120.
|
|
||||||
15 .97 -10. 30.
|
|
||||||
18 .973 -16. 50.
|
|
||||||
19 .963 -8. 24.
|
|
||||||
24 .992 -300. 300.
|
|
||||||
25 1.05 -47. 140.
|
|
||||||
26 1.015 -1000. 1000.
|
|
||||||
27 .968 -300. 300.
|
|
||||||
31 .967 -300. 300.
|
|
||||||
32 .964 -14. 42.
|
|
||||||
34 .984 -8. 24.
|
|
||||||
36 .98 -8. 24.
|
|
||||||
40 .97 -300. 300.
|
|
||||||
42 .985 -300. 300.
|
|
||||||
46 1.005 -100. 100.
|
|
||||||
49 1.025 -85. 210.
|
|
||||||
54 .955 -300. 300.
|
|
||||||
55 .952 -8. 23.
|
|
||||||
56 .954 -8. 15.
|
|
||||||
59 .985 -60. 180.
|
|
||||||
61 .995 -100. 300.
|
|
||||||
62 .998 -20. 20.
|
|
||||||
65 1.005 -67. 200.
|
|
||||||
66 1.05 -67. 200.
|
|
||||||
69 1.035 -300. 300.
|
|
||||||
70 .984 -10. 32.
|
|
||||||
72 .98 -100. 100.
|
|
||||||
73 .991 -100. 100.
|
|
||||||
74 .958 -6. 9.
|
|
||||||
76 .943 -8. 23.
|
|
||||||
77 1.006 -20. 70.
|
|
||||||
80 1.04 -165. 280.
|
|
||||||
85 .985 -8. 23.
|
|
||||||
87 1.015 -100. 1000.
|
|
||||||
89 1.005 -210. 300.
|
|
||||||
90 .985 -300. 300.
|
|
||||||
91 .98 -100. 100.
|
|
||||||
92 .993 -3. 9.
|
|
||||||
99 1.01 -100. 100.
|
|
||||||
100 1.017 -50. 155.
|
|
||||||
103 1.001 -15. 40.
|
|
||||||
104 .971 -8. 23.
|
|
||||||
105 .965 -8. 23.
|
|
||||||
107 .952 -200. 200.
|
|
||||||
110 .973 -8. 23.
|
|
||||||
111 .98 -100. 1000.
|
|
||||||
112 .975 -100. 1000.
|
|
||||||
113 .993 -100. 200.
|
|
||||||
116 1.005 -1000. 1000.
|
|
||||||
0
|
|
||||||
10 0. 1.25 1. 100. 600.
|
|
||||||
12 0. 2.6 1.2 60. 200.
|
|
||||||
25 0. 1.5 1. 50. 300.
|
|
||||||
26 0. 1.5 1. 100. 400.
|
|
||||||
49 0. 2.1 1. 100. 400.
|
|
||||||
54 0. 2.0 1.4 20. 300.
|
|
||||||
59 0. 1.6 1. 50. 350.
|
|
||||||
61 0. 1.5 1. 50. 400.
|
|
||||||
65 0. 1.5 1. 100. 500.
|
|
||||||
66 0. 1.5 1. 100. 500.
|
|
||||||
69 0. 1.0 1. 100. 800.
|
|
||||||
80 0. 1.23 1. 100. 600.
|
|
||||||
89 0. 1.2 1. 100. 800.
|
|
||||||
100 0. 1.6 1. 100. 400.
|
|
||||||
103 0. 2.5 1.2 20. 200.
|
|
||||||
111 0. 2.4 1.1 10. 200.
|
|
||||||
0
|
|
||||||
0
|
|
||||||
0
|
|
||||||
1 100 92 -25. 25.
|
|
||||||
2 106 107 -18. 18.
|
|
||||||
0
|
|
||||||
0
|
|
||||||
398
IEEE118PG.dat
398
IEEE118PG.dat
|
|
@ -1,398 +0,0 @@
|
||||||
118 179 100 28 0.1
|
|
||||||
1.e-5 2
|
|
||||||
1 69
|
|
||||||
0
|
|
||||||
1 1 2 0.0303 0.0999 0.0127
|
|
||||||
2 1 3 0.0129 0.0424 0.00541
|
|
||||||
3 4 5 0.00176 0.00798 0.00105
|
|
||||||
4 3 5 0.0241 0.1080 0.0142
|
|
||||||
5 5 6 0.0119 0.0540 0.00713
|
|
||||||
6 6 7 0.00459 0.0208 0.00275
|
|
||||||
7 8 9 0.00244 0.0305 0.5810
|
|
||||||
9 9 10 0.00258 0.0322 0.6150
|
|
||||||
10 4 11 0.0209 0.0688 0.00874
|
|
||||||
11 5 11 0.0203 0.0682 0.00869
|
|
||||||
12 11 12 0.00595 0.0196 0.00251
|
|
||||||
13 2 12 0.0187 0.0616 0.00786
|
|
||||||
14 3 12 0.0484 0.1600 0.0203
|
|
||||||
15 7 12 0.00862 0.0340 0.00437
|
|
||||||
16 11 13 0.02225 0.0731 0.00938
|
|
||||||
17 12 14 0.0215 0.0707 0.00908
|
|
||||||
18 13 15 0.0744 0.2444 0.03134
|
|
||||||
19 14 15 0.0595 0.1950 0.0251
|
|
||||||
20 12 16 0.0212 0.0834 0.0107
|
|
||||||
21 15 17 0.0132 0.0437 0.0222
|
|
||||||
22 16 17 0.0454 0.1801 0.0233
|
|
||||||
23 17 18 0.0123 0.0505 0.00649
|
|
||||||
24 18 19 0.01119 0.0493 0.00571
|
|
||||||
25 19 20 0.0252 0.1170 0.0149
|
|
||||||
26 15 19 0.0120 0.0394 0.00505
|
|
||||||
27 20 21 0.0183 0.0849 0.0108
|
|
||||||
28 21 22 0.0209 0.0970 0.0123
|
|
||||||
29 22 23 0.0342 0.1590 0.0202
|
|
||||||
30 23 24 0.0135 0.0492 0.0249
|
|
||||||
31 23 25 0.0156 0.0800 0.0432
|
|
||||||
33 25 27 0.0318 0.1630 0.0882
|
|
||||||
34 27 28 0.01913 0.0855 0.0108
|
|
||||||
35 28 29 0.0237 0.0943 0.0119
|
|
||||||
37 8 30 0.00431 0.0504 0.2570
|
|
||||||
38 26 30 0.00799 0.0860 0.4540
|
|
||||||
39 17 31 0.0474 0.1563 0.01995
|
|
||||||
40 29 31 0.0108 0.0331 0.00415
|
|
||||||
41 23 32 0.0317 0.1153 0.05865
|
|
||||||
42 31 32 0.0298 0.0985 0.01255
|
|
||||||
43 27 32 0.0229 0.0755 0.00963
|
|
||||||
44 15 33 0.0380 0.1244 0.01597
|
|
||||||
45 19 34 0.0752 0.2470 0.0316
|
|
||||||
46 35 36 0.00224 0.0102 0.00124
|
|
||||||
47 35 37 0.0110 0.0497 0.00659
|
|
||||||
48 33 37 0.0415 0.1420 0.0183
|
|
||||||
49 34 36 0.00871 0.0268 0.00284
|
|
||||||
50 34 37 0.00256 0.0094 0.00429
|
|
||||||
52 37 39 0.0321 0.1060 0.0135
|
|
||||||
53 37 40 0.0593 0.1680 0.0210
|
|
||||||
54 30 38 0.00464 0.0540 0.2110
|
|
||||||
55 39 40 0.0184 0.0605 0.00776
|
|
||||||
56 40 41 0.0145 0.0487 0.00611
|
|
||||||
57 40 42 0.0555 0.1830 0.0233
|
|
||||||
58 41 42 0.0410 0.1350 0.0172
|
|
||||||
59 43 44 0.0608 0.2454 0.03034
|
|
||||||
60 34 43 0.0413 0.1681 0.02113
|
|
||||||
61 44 45 0.0224 0.0901 0.0112
|
|
||||||
62 45 46 0.0400 0.1356 0.0166
|
|
||||||
63 46 47 0.0380 0.1270 0.0158
|
|
||||||
64 46 48 0.0601 0.1890 0.0236
|
|
||||||
65 47 49 0.0191 0.0625 0.00802
|
|
||||||
66 42 49 0.03575 0.1615 0.0860
|
|
||||||
67 45 49 0.0684 0.1860 0.0222
|
|
||||||
68 48 49 0.0179 0.0505 0.00629
|
|
||||||
69 49 50 0.0267 0.0752 0.00937
|
|
||||||
70 49 51 0.0486 0.1370 0.0171
|
|
||||||
71 51 52 0.0203 0.0588 0.00698
|
|
||||||
72 52 53 0.0405 0.1635 0.02029
|
|
||||||
73 53 54 0.0263 0.1220 0.0155
|
|
||||||
74 49 54 0.03976 0.1450 0.0734
|
|
||||||
75 54 55 0.0169 0.0707 0.0101
|
|
||||||
76 54 56 0.00275 0.00955 0.00366
|
|
||||||
77 55 56 0.00488 0.0151 0.00187
|
|
||||||
78 56 57 0.0343 0.0966 0.0121
|
|
||||||
79 50 57 0.0474 0.1340 0.0166
|
|
||||||
80 56 58 0.0343 0.0966 0.0121
|
|
||||||
81 51 58 0.0255 0.0719 0.00894
|
|
||||||
82 54 59 0.0503 0.2293 0.0299
|
|
||||||
83 56 59 0.04069 0.12243 0.05525
|
|
||||||
84 55 59 0.04739 0.2158 0.02823
|
|
||||||
85 59 60 0.0317 0.1450 0.0188
|
|
||||||
86 59 61 0.0328 0.1500 0.0194
|
|
||||||
87 60 61 0.00264 0.0135 0.00728
|
|
||||||
88 60 62 0.0123 0.0561 0.00734
|
|
||||||
89 61 62 0.00824 0.0376 0.0049
|
|
||||||
91 63 64 0.00172 0.0200 0.1080
|
|
||||||
93 38 65 0.00901 0.0986 0.5230
|
|
||||||
94 64 65 0.00269 0.0302 0.1900
|
|
||||||
95 49 66 0.0090 0.04595 0.0248
|
|
||||||
96 62 66 0.0482 0.2180 0.0289
|
|
||||||
97 62 67 0.0258 0.1170 0.0155
|
|
||||||
99 66 67 0.0224 0.1015 0.01341
|
|
||||||
100 65 68 0.00138 0.0160 0.3190
|
|
||||||
101 47 69 0.0844 0.2778 0.03546
|
|
||||||
102 49 69 0.0985 0.3240 0.0414
|
|
||||||
104 69 70 0.0300 0.1270 0.0610
|
|
||||||
105 24 70 0.10221 0.4115 0.05099
|
|
||||||
106 70 71 0.00882 0.0355 0.00439
|
|
||||||
107 24 72 0.0488 0.1960 0.0244
|
|
||||||
108 71 72 0.0446 0.1800 0.02222
|
|
||||||
109 71 73 0.00866 0.0454 0.00589
|
|
||||||
110 70 74 0.0401 0.1323 0.01684
|
|
||||||
111 70 75 0.0428 0.1410 0.0180
|
|
||||||
112 69 75 0.0405 0.1220 0.0620
|
|
||||||
113 74 75 0.0123 0.0406 0.00517
|
|
||||||
114 76 77 0.0444 0.1480 0.0184
|
|
||||||
115 69 77 0.0309 0.1010 0.0519
|
|
||||||
116 75 77 0.0601 0.1999 0.02489
|
|
||||||
117 77 78 0.00376 0.0124 0.00632
|
|
||||||
118 78 79 0.00546 0.0244 0.00324
|
|
||||||
119 77 80 0.01077 0.03318 0.0350
|
|
||||||
120 79 80 0.0156 0.0704 0.00945
|
|
||||||
121 68 81 0.00175 0.0202 0.4040
|
|
||||||
123 77 82 0.0298 0.0853 0.04087
|
|
||||||
124 82 83 0.0112 0.03665 0.01898
|
|
||||||
125 83 84 0.0625 0.1320 0.0129
|
|
||||||
126 83 85 0.0430 0.1480 0.0174
|
|
||||||
127 84 85 0.0302 0.0641 0.00617
|
|
||||||
128 85 86 0.0350 0.1230 0.0138
|
|
||||||
129 86 87 0.02828 0.2074 0.02225
|
|
||||||
130 85 88 0.0200 0.1020 0.0138
|
|
||||||
131 85 89 0.0239 0.1730 0.0235
|
|
||||||
132 88 89 0.0139 0.0712 0.00969
|
|
||||||
133 89 90 0.01631 0.06515 0.0794
|
|
||||||
134 90 91 0.0254 0.0836 0.0107
|
|
||||||
135 89 92 0.00791 0.03827 0.0481
|
|
||||||
136 91 92 0.0387 0.1272 0.01634
|
|
||||||
137 92 93 0.0258 0.0848 0.0109
|
|
||||||
138 92 94 0.0481 0.1580 0.0203
|
|
||||||
139 93 94 0.0223 0.0732 0.00938
|
|
||||||
140 94 95 0.0132 0.0434 0.00555
|
|
||||||
141 80 96 0.0356 0.1820 0.0247
|
|
||||||
142 82 96 0.0162 0.0530 0.0272
|
|
||||||
143 94 96 0.0269 0.0869 0.0115
|
|
||||||
144 80 97 0.0183 0.0934 0.0127
|
|
||||||
145 80 98 0.0238 0.1080 0.0143
|
|
||||||
146 80 99 0.0454 0.2060 0.0273
|
|
||||||
148 94 100 0.0178 0.0580 0.0302
|
|
||||||
149 95 96 0.0171 0.0547 0.00737
|
|
||||||
150 96 97 0.0173 0.0885 0.0120
|
|
||||||
151 98 100 0.0397 0.1790 0.0238
|
|
||||||
152 99 100 0.0180 0.0813 0.0108
|
|
||||||
153 100 101 0.0277 0.1262 0.0164
|
|
||||||
154 92 102 0.0123 0.0559 0.00732
|
|
||||||
155 101 102 0.0246 0.1120 0.0147
|
|
||||||
156 100 103 0.0160 0.0525 0.0268
|
|
||||||
157 100 104 0.0451 0.2040 0.02705
|
|
||||||
158 103 104 0.0466 0.1584 0.02035
|
|
||||||
159 103 105 0.0535 0.1625 0.0204
|
|
||||||
160 100 106 0.0605 0.2290 0.0310
|
|
||||||
161 104 105 0.00994 0.0378 0.00493
|
|
||||||
162 105 106 0.0140 0.0547 0.00717
|
|
||||||
163 105 107 0.0530 0.1830 0.0236
|
|
||||||
164 105 108 0.0261 0.0703 0.09222
|
|
||||||
166 108 109 0.0105 0.0288 0.0038
|
|
||||||
167 103 110 0.03906 0.1813 0.02305
|
|
||||||
168 109 110 0.0278 0.0762 0.0101
|
|
||||||
169 110 111 0.0220 0.0755 0.0100
|
|
||||||
170 110 112 0.0247 0.0640 0.0310
|
|
||||||
171 17 113 0.00913 0.0301 0.00384
|
|
||||||
172 32 113 0.0615 0.2030 0.0259
|
|
||||||
173 32 114 0.0135 0.0612 0.00814
|
|
||||||
174 27 115 0.0164 0.0741 0.00986
|
|
||||||
175 114 115 0.0023 0.0104 0.00138
|
|
||||||
176 68 116 0.00034 0.00405 0.0820
|
|
||||||
177 12 117 0.0329 0.1400 0.0179
|
|
||||||
178 75 118 0.01450 0.04810 0.00599
|
|
||||||
179 76 118 0.0164 0.0544 0.00678
|
|
||||||
0
|
|
||||||
5 -0.4
|
|
||||||
17 0.
|
|
||||||
34 .14
|
|
||||||
37 -0.25
|
|
||||||
44 .1
|
|
||||||
45 .1
|
|
||||||
46 .1
|
|
||||||
48 .15
|
|
||||||
74 .12
|
|
||||||
79 .2
|
|
||||||
82 .2
|
|
||||||
83 .1
|
|
||||||
105 .2
|
|
||||||
107 .06
|
|
||||||
110 .06
|
|
||||||
0
|
|
||||||
1 8 5 0.0 0.0267 0.9850 0.9 1.1
|
|
||||||
2 25 26 0.0 0.0382 0.9600 0.9 1.1
|
|
||||||
3 17 30 0.0 0.0388 0.9600 0.9 1.1
|
|
||||||
4 37 38 0.0 0.0375 0.9350 0.9 1.1
|
|
||||||
5 59 63 0.0 0.0386 0.9600 0.9 1.1
|
|
||||||
6 61 64 0.0 0.0268 0.9850 0.9 1.1
|
|
||||||
7 65 66 0.0 0.0370 0.9350 0.9 1.1
|
|
||||||
8 68 69 0.0 0.0370 0.9350 0.9 1.1
|
|
||||||
9 80 81 0.0 0.0370 0.9350 0.9 1.1
|
|
||||||
10 92 100 0.0648 0.2950 1. 0.9 1.1
|
|
||||||
11 106 107 0.0530 0.1830 1. 0.9 1.1
|
|
||||||
0
|
|
||||||
1 0 0 51 27
|
|
||||||
2 0 0 20 9
|
|
||||||
3 0 0 39 10
|
|
||||||
4 -9 0 30 12
|
|
||||||
5 0 0 0 0
|
|
||||||
6 0 0 52 22
|
|
||||||
7 0 0 19 2
|
|
||||||
8 -28 0 0 0
|
|
||||||
9 0 0 0 0
|
|
||||||
10 308.8957824 0 0 0
|
|
||||||
11 0 0 70 23
|
|
||||||
12 199.999997 0 47 10
|
|
||||||
13 0 0 34 16
|
|
||||||
14 0 0 14 1
|
|
||||||
15 0 0 90 30
|
|
||||||
16 0 0 25 10
|
|
||||||
17 0 0 11 3
|
|
||||||
18 0 0 60 34
|
|
||||||
19 0 0 45 25
|
|
||||||
20 0 0 18 3
|
|
||||||
21 0 0 14 8
|
|
||||||
22 0 0 10 5
|
|
||||||
23 0 0 7 3
|
|
||||||
24 -13 0 0 0
|
|
||||||
25 287.8800829 0 0 0
|
|
||||||
26 290.2004416 0 0 0
|
|
||||||
27 -9 0 62 13
|
|
||||||
28 0 0 17 7
|
|
||||||
29 0 0 24 4
|
|
||||||
30 0 0 0 0
|
|
||||||
31 7 0 43 27
|
|
||||||
32 0 0 59 23
|
|
||||||
33 0 0 23 9
|
|
||||||
34 0 0 59 26
|
|
||||||
35 0 0 33 9
|
|
||||||
36 0 0 31 17
|
|
||||||
37 0 0 0 0
|
|
||||||
38 0 0 0 0
|
|
||||||
39 0 0 27 11
|
|
||||||
40 -46 0 20 23
|
|
||||||
41 0 0 37 10
|
|
||||||
42 -59 0 37 23
|
|
||||||
43 0 0 18 7
|
|
||||||
44 0 0 16 8
|
|
||||||
45 0 0 53 22
|
|
||||||
46 19 0 28 10
|
|
||||||
47 0 0 34 0
|
|
||||||
48 0 0 20 11
|
|
||||||
49 267.2608745 0 87 30
|
|
||||||
50 0 0 17 4
|
|
||||||
51 0 0 17 8
|
|
||||||
52 0 0 18 5
|
|
||||||
53 0 0 23 11
|
|
||||||
54 197.5120216 0 113 32
|
|
||||||
55 0 0 63 22
|
|
||||||
56 0 0 84 18
|
|
||||||
57 0 0 12 3
|
|
||||||
58 0 0 12 3
|
|
||||||
59 287.6777704 0 277 113
|
|
||||||
60 0 0 78 3
|
|
||||||
61 289.5811164 0 0 0
|
|
||||||
62 0 0 77 14
|
|
||||||
63 0 0 0 0
|
|
||||||
64 0 0 0 0
|
|
||||||
65 291.8940482 0 0 0
|
|
||||||
66 290.3512793 0 39 18
|
|
||||||
67 0 0 28 7
|
|
||||||
68 0 0 0 0
|
|
||||||
69 316.6388411 0 0 0
|
|
||||||
70 0 0 66 20
|
|
||||||
71 0 0 0 0
|
|
||||||
72 -12 0 0 0
|
|
||||||
73 -6 0 0 0
|
|
||||||
74 0 0 68 27
|
|
||||||
75 0 0 47 11
|
|
||||||
76 0 0 68 36
|
|
||||||
77 0 0 61 28
|
|
||||||
78 0 0 71 26
|
|
||||||
79 0 0 39 32
|
|
||||||
80 309.9650462 0 130 26
|
|
||||||
81 0 0 0 0
|
|
||||||
82 0 0 54 27
|
|
||||||
83 0 0 20 10
|
|
||||||
84 0 0 11 7
|
|
||||||
85 0 0 24 15
|
|
||||||
86 0 0 21 10
|
|
||||||
87 4 0 0 0
|
|
||||||
88 0 0 48 10
|
|
||||||
89 312.5227132 0 0 0
|
|
||||||
90 -85 0 78 42
|
|
||||||
91 -10 0 0 0
|
|
||||||
92 0 0 65 10
|
|
||||||
93 0 0 12 7
|
|
||||||
94 0 0 30 16
|
|
||||||
95 0 0 42 31
|
|
||||||
96 0 0 38 15
|
|
||||||
97 0 0 15 9
|
|
||||||
98 0 0 34 8
|
|
||||||
99 -42 0 0 0
|
|
||||||
100 280.2678821 0 37 18
|
|
||||||
101 0 0 22 15
|
|
||||||
102 0 0 5 3
|
|
||||||
103 188.5147785 0 23 16
|
|
||||||
104 0 0 38 25
|
|
||||||
105 0 0 31 26
|
|
||||||
106 0 0 43 16
|
|
||||||
107 -22 0 28 12
|
|
||||||
108 0 0 2 1
|
|
||||||
109 0 0 8 3
|
|
||||||
110 0 0 39 30
|
|
||||||
111 183.7381328 0 0 0
|
|
||||||
112 -43 0 25 13
|
|
||||||
113 -6 0 0 0
|
|
||||||
114 0 0 8 3
|
|
||||||
115 0 0 22 7
|
|
||||||
116 -184 0 0 0
|
|
||||||
117 0 0 20 8
|
|
||||||
118 0 0 33 15
|
|
||||||
0
|
|
||||||
1 .955 -5. 15.
|
|
||||||
4 .998 -300. 300.
|
|
||||||
6 .99 -13. 50.
|
|
||||||
8 1.015 -300. 300.
|
|
||||||
10 1.05 -147. 200.
|
|
||||||
12 .99 -35. 120.
|
|
||||||
15 .97 -10. 30.
|
|
||||||
18 .973 -16. 50.
|
|
||||||
19 .963 -8. 24.
|
|
||||||
24 .992 -300. 300.
|
|
||||||
25 1.05 -47. 140.
|
|
||||||
26 1.015 -1000. 1000.
|
|
||||||
27 .968 -300. 300.
|
|
||||||
31 .967 -300. 300.
|
|
||||||
32 .964 -14. 42.
|
|
||||||
34 .984 -8. 24.
|
|
||||||
36 .98 -8. 24.
|
|
||||||
40 .97 -300. 300.
|
|
||||||
42 .985 -300. 300.
|
|
||||||
46 1.005 -100. 100.
|
|
||||||
49 1.025 -85. 210.
|
|
||||||
54 .955 -300. 300.
|
|
||||||
55 .952 -8. 23.
|
|
||||||
56 .954 -8. 15.
|
|
||||||
59 .985 -60. 180.
|
|
||||||
61 .995 -100. 300.
|
|
||||||
62 .998 -20. 20.
|
|
||||||
65 1.005 -67. 200.
|
|
||||||
66 1.05 -67. 200.
|
|
||||||
69 1.035 -300. 300.
|
|
||||||
70 .984 -10. 32.
|
|
||||||
72 .98 -100. 100.
|
|
||||||
73 .991 -100. 100.
|
|
||||||
74 .958 -6. 9.
|
|
||||||
76 .943 -8. 23.
|
|
||||||
77 1.006 -20. 70.
|
|
||||||
80 1.04 -165. 280.
|
|
||||||
85 .985 -8. 23.
|
|
||||||
87 1.015 -100. 1000.
|
|
||||||
89 1.005 -210. 300.
|
|
||||||
90 .985 -300. 300.
|
|
||||||
91 .98 -100. 100.
|
|
||||||
92 .993 -3. 9.
|
|
||||||
99 1.01 -100. 100.
|
|
||||||
100 1.017 -50. 155.
|
|
||||||
103 1.001 -15. 40.
|
|
||||||
104 .971 -8. 23.
|
|
||||||
105 .965 -8. 23.
|
|
||||||
107 .952 -200. 200.
|
|
||||||
110 .973 -8. 23.
|
|
||||||
111 .98 -100. 1000.
|
|
||||||
112 .975 -100. 1000.
|
|
||||||
113 .993 -100. 200.
|
|
||||||
116 1.005 -1000. 1000.
|
|
||||||
0
|
|
||||||
10 0. 1.25 1. 100. 600.
|
|
||||||
12 0. 2.6 1.2 60. 200.
|
|
||||||
25 0. 1.5 1. 50. 300.
|
|
||||||
26 0. 1.5 1. 100. 400.
|
|
||||||
49 0. 2.1 1. 100. 400.
|
|
||||||
54 0. 2.0 1.4 20. 300.
|
|
||||||
59 0. 1.6 1. 50. 350.
|
|
||||||
61 0. 1.5 1. 50. 400.
|
|
||||||
65 0. 1.5 1. 100. 500.
|
|
||||||
66 0. 1.5 1. 100. 500.
|
|
||||||
69 0. 1.0 1. 100. 800.
|
|
||||||
80 0. 1.23 1. 100. 600.
|
|
||||||
89 0. 1.2 1. 100. 800.
|
|
||||||
100 0. 1.6 1. 100. 400.
|
|
||||||
103 0. 2.5 1.2 20. 200.
|
|
||||||
111 0. 2.4 1.1 10. 200.
|
|
||||||
0
|
|
||||||
0
|
|
||||||
0
|
|
||||||
1 100 92 -25. 25.
|
|
||||||
2 106 107 -18. 18.
|
|
||||||
0
|
|
||||||
0
|
|
||||||
58
IEEE14.dat
58
IEEE14.dat
|
|
@ -1,58 +0,0 @@
|
||||||
14 20 100. 20 0.1
|
|
||||||
1.e-5 2
|
|
||||||
1 1
|
|
||||||
0
|
|
||||||
1 1 2 0.01938 0.05917 0.0264
|
|
||||||
2 1 5 0.05403 0.22304 0.0246
|
|
||||||
3 2 3 0.04699 0.19797 0.0219
|
|
||||||
4 2 4 0.05811 0.17632 0.0187
|
|
||||||
5 2 5 0.05695 0.17388 0.0170
|
|
||||||
6 3 4 0.06701 0.17103 0.0173
|
|
||||||
7 4 5 0.01335 0.04211 0.0064
|
|
||||||
11 6 11 0.09498 0.19890 0.0
|
|
||||||
12 6 12 0.12291 0.15581 0.0
|
|
||||||
13 6 13 0.06615 0.13027 0.0
|
|
||||||
14 7 8 0.0 0.17615 0.0
|
|
||||||
15 7 9 0.0 0.11001 0.0
|
|
||||||
16 9 10 0.03181 0.08450 0.0
|
|
||||||
19 12 13 0.22092 0.19988 0.0
|
|
||||||
20 13 14 0.17038 0.34802 0.0
|
|
||||||
4 9 14 0.12711 0.27038 0.0
|
|
||||||
5 10 11 0.08205 0.19207 0.0
|
|
||||||
0
|
|
||||||
9 0.19
|
|
||||||
0
|
|
||||||
1 4 7 0.0 0.20912 0.978 0.9 1.1
|
|
||||||
2 4 9 0.0 0.55618 0.969 0.9 1.1
|
|
||||||
3 5 6 0.0 0.25202 0.932 0.9 1.1
|
|
||||||
0
|
|
||||||
1 60. 0. 0. 0.
|
|
||||||
2 40. 42.4 21.7 12.7
|
|
||||||
3 0. 23.39 94.2 19.0
|
|
||||||
4 0. 0. 47.8 -3.9
|
|
||||||
5 0. 0. 7.6 1.6
|
|
||||||
6 0. 12.24 11.2 7.5
|
|
||||||
7 0. 0. 0. 0.
|
|
||||||
8 0. 17.36 0. 0.
|
|
||||||
9 0. 0. 29.5 16.6
|
|
||||||
10 0. 0. 9. 5.8
|
|
||||||
11 0. 0. 3.5 1.8
|
|
||||||
12 0. 0. 6.1 1.6
|
|
||||||
13 0. 0. 13.5 5.8
|
|
||||||
14 0. 0. 14.9 5.
|
|
||||||
0
|
|
||||||
1 1.060 -40. 50.
|
|
||||||
2 1.045 -40. 50.
|
|
||||||
3 1.010 0. 40.
|
|
||||||
6 1.070 -30. 40.
|
|
||||||
8 1.090 -30. 45.
|
|
||||||
0
|
|
||||||
1 105. 2.45 0.005 50. 200.
|
|
||||||
2 44.4 3.51 0.005 20. 100.
|
|
||||||
6 40.6 3.89 0.005 20. 100.
|
|
||||||
0
|
|
||||||
0
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
58
IEEE14PG.dat
58
IEEE14PG.dat
|
|
@ -1,58 +0,0 @@
|
||||||
14 20 100. 20 0.1
|
|
||||||
1.e-5 2
|
|
||||||
1 1
|
|
||||||
0
|
|
||||||
1 1 2 0.01938 0.05917 0.0264
|
|
||||||
2 1 5 0.05403 0.22304 0.0246
|
|
||||||
3 2 3 0.04699 0.19797 0.0219
|
|
||||||
4 2 4 0.05811 0.17632 0.0187
|
|
||||||
5 2 5 0.05695 0.17388 0.0170
|
|
||||||
6 3 4 0.06701 0.17103 0.0173
|
|
||||||
7 4 5 0.01335 0.04211 0.0064
|
|
||||||
11 6 11 0.09498 0.19890 0.0
|
|
||||||
12 6 12 0.12291 0.15581 0.0
|
|
||||||
13 6 13 0.06615 0.13027 0.0
|
|
||||||
14 7 8 0.0 0.17615 0.0
|
|
||||||
15 7 9 0.0 0.11001 0.0
|
|
||||||
16 9 10 0.03181 0.08450 0.0
|
|
||||||
19 12 13 0.22092 0.19988 0.0
|
|
||||||
20 13 14 0.17038 0.34802 0.0
|
|
||||||
4 9 14 0.12711 0.27038 0.0
|
|
||||||
5 10 11 0.08205 0.19207 0.0
|
|
||||||
0
|
|
||||||
9 0.19
|
|
||||||
0
|
|
||||||
1 4 7 0.0 0.20912 0.978 0.9 1.1
|
|
||||||
2 4 9 0.0 0.55618 0.969 0.9 1.1
|
|
||||||
3 5 6 0.0 0.25202 0.932 0.9 1.1
|
|
||||||
0
|
|
||||||
1 199.9999937 0 0 0
|
|
||||||
2 50.1353376 42.4 21.7 12.7
|
|
||||||
3 0 23.39 94.2 19
|
|
||||||
4 0 0 47.8 -3.9
|
|
||||||
5 0 0 7.6 1.6
|
|
||||||
6 20.00001995 12.24 11.2 7.5
|
|
||||||
7 0 0 0 0
|
|
||||||
8 0 17.36 0 0
|
|
||||||
9 0 0 29.5 16.6
|
|
||||||
10 0 0 9 5.8
|
|
||||||
11 0 0 3.5 1.8
|
|
||||||
12 0 0 6.1 1.6
|
|
||||||
13 0 0 13.5 5.8
|
|
||||||
14 0 0 14.9 5
|
|
||||||
0
|
|
||||||
1 1.060 -40. 50.
|
|
||||||
2 1.045 -40. 50.
|
|
||||||
3 1.010 0. 40.
|
|
||||||
6 1.070 -30. 40.
|
|
||||||
8 1.090 -30. 45.
|
|
||||||
0
|
|
||||||
1 105. 2.45 0.005 50. 200.
|
|
||||||
2 44.4 3.51 0.005 20. 100.
|
|
||||||
6 40.6 3.89 0.005 20. 100.
|
|
||||||
0
|
|
||||||
0
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
824
IEEE3001.dat
824
IEEE3001.dat
|
|
@ -1,824 +0,0 @@
|
||||||
300 409 100 28 0.100000000000000 0 0 0
|
|
||||||
1.00000000000000e-05 4 0 0 0 0 0 0
|
|
||||||
1 38 0 0 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
1 269 291 0.000800000000000000 0.00348000000000000 0 0 0
|
|
||||||
2 226 271 0.0555800000000000 0.246660000000000 0 0 0
|
|
||||||
3 226 300 0.0555900000000000 0.246660000000000 0 0 0
|
|
||||||
4 227 225 0.0381100000000000 0.216480000000000 0 0 0
|
|
||||||
5 225 228 0.0537000000000000 0.0702600000000000 0 0 0
|
|
||||||
6 228 229 1.10680000000000 0.952780000000000 0 0 0
|
|
||||||
7 271 300 0.0558000000000000 0.246660000000000 0 0 0
|
|
||||||
8 300 144 0.0737800000000000 0.0635200000000000 0 0 0
|
|
||||||
9 144 270 0.0383200000000000 0.0289400000000000 0 0 0
|
|
||||||
10 227 68 0.235520000000000 0.990360000000000 0 0 0
|
|
||||||
11 146 147 0.00100000000000000 0.00600000000000000 0 0 0
|
|
||||||
12 230 71 0.00100000000000000 0.00900000000000000 0 0 0
|
|
||||||
13 230 148 0.00600000000000000 0.0270000000000000 0.0540000000000000 0 0
|
|
||||||
14 292 272 0 0.00300000000000000 0 0 0
|
|
||||||
15 292 150 0.00800000000000000 0.0690000000000000 0.139000000000000 0 0
|
|
||||||
16 292 104 0.00100000000000000 0.00700000000000000 0 0 0
|
|
||||||
17 70 149 0.00200000000000000 0.0190000000000000 1.12700000000000 0 0
|
|
||||||
18 147 72 0.00600000000000000 0.0290000000000000 0.0180000000000000 0 0
|
|
||||||
19 272 231 0.00100000000000000 0.00900000000000000 0.0700000000000000 0 0
|
|
||||||
20 272 98 0.00100000000000000 0.00700000000000000 0.0140000000000000 0 0
|
|
||||||
21 148 273 0.0130000000000000 0.0595000000000000 0.0330000000000000 0 0
|
|
||||||
22 148 75 0.0130000000000000 0.0420000000000000 0.0810000000000000 0 0
|
|
||||||
23 72 273 0.00600000000000000 0.0270000000000000 0.0130000000000000 0 0
|
|
||||||
24 273 74 0.00800000000000000 0.0340000000000000 0.0180000000000000 0 0
|
|
||||||
25 231 233 0.00200000000000000 0.0150000000000000 0.118000000000000 0 0
|
|
||||||
26 74 232 0.00600000000000000 0.0340000000000000 0.0160000000000000 0 0
|
|
||||||
27 75 286 0.0140000000000000 0.0420000000000000 0.0970000000000000 0 0
|
|
||||||
28 286 297 0.0650000000000000 0.248000000000000 0.121000000000000 0 0
|
|
||||||
29 286 165 0.0990000000000000 0.248000000000000 0.0350000000000000 0 0
|
|
||||||
30 286 166 0.0960000000000000 0.363000000000000 0.0480000000000000 0 0
|
|
||||||
31 149 274 0.00200000000000000 0.0220000000000000 1.28000000000000 0 0
|
|
||||||
32 150 233 0.00200000000000000 0.0180000000000000 0.0360000000000000 0 0
|
|
||||||
33 150 163 0.0130000000000000 0.0800000000000000 0.151000000000000 0 0
|
|
||||||
34 232 77 0.0160000000000000 0.0330000000000000 0.0150000000000000 0 0
|
|
||||||
35 232 79 0.0690000000000000 0.186000000000000 0.0980000000000000 0 0
|
|
||||||
36 233 235 0.00400000000000000 0.0340000000000000 0.280000000000000 0 0
|
|
||||||
37 77 234 0.0520000000000000 0.111000000000000 0.0500000000000000 0 0
|
|
||||||
38 234 78 0.0190000000000000 0.0390000000000000 0.0180000000000000 0 0
|
|
||||||
39 235 14 0.00700000000000000 0.0680000000000000 0.134000000000000 0 0
|
|
||||||
40 78 151 0.0360000000000000 0.0710000000000000 0.0340000000000000 0 0
|
|
||||||
41 151 79 0.0450000000000000 0.120000000000000 0.0650000000000000 0 0
|
|
||||||
42 151 15 0.0430000000000000 0.130000000000000 0.0140000000000000 0 0
|
|
||||||
43 236 80 0 0.0630000000000000 0 0 0
|
|
||||||
44 236 238 0.00250000000000000 0.0120000000000000 0.0130000000000000 0 0
|
|
||||||
45 236 152 0.00600000000000000 0.0290000000000000 0.0200000000000000 0 0
|
|
||||||
46 236 287 0.00700000000000000 0.0430000000000000 0.0260000000000000 0 0
|
|
||||||
47 80 274 0.00100000000000000 0.00800000000000000 0.0420000000000000 0 0
|
|
||||||
48 237 245 0.0120000000000000 0.0600000000000000 0.00800000000000000 0 0
|
|
||||||
49 237 161 0.00600000000000000 0.0140000000000000 0.00200000000000000 0 0
|
|
||||||
50 237 293 0.0100000000000000 0.0290000000000000 0.00300000000000000 0 0
|
|
||||||
51 81 164 0.00400000000000000 0.0270000000000000 0.0430000000000000 0 0
|
|
||||||
52 297 238 0.00800000000000000 0.0470000000000000 0.00800000000000000 0 0
|
|
||||||
53 297 152 0.0220000000000000 0.0640000000000000 0.00700000000000000 0 0
|
|
||||||
54 297 287 0.0100000000000000 0.0360000000000000 0.0200000000000000 0 0
|
|
||||||
55 297 241 0.0170000000000000 0.0810000000000000 0.0480000000000000 0 0
|
|
||||||
56 297 165 0.102000000000000 0.254000000000000 0.0330000000000000 0 0
|
|
||||||
57 297 166 0.0470000000000000 0.127000000000000 0.0160000000000000 0 0
|
|
||||||
58 238 287 0.00800000000000000 0.0370000000000000 0.0200000000000000 0 0
|
|
||||||
59 238 239 0.0320000000000000 0.0870000000000000 0.0400000000000000 0 0
|
|
||||||
60 82 274 0.000600000000000000 0.00640000000000000 0.404000000000000 0 0
|
|
||||||
61 152 155 0.0260000000000000 0.154000000000000 0.0220000000000000 0 0
|
|
||||||
62 287 274 0 0.0290000000000000 0 0 0
|
|
||||||
63 287 241 0.0650000000000000 0.191000000000000 0.0200000000000000 0 0
|
|
||||||
64 287 156 0.0310000000000000 0.0890000000000000 0.0360000000000000 0 0
|
|
||||||
65 274 153 0.00200000000000000 0.0140000000000000 0.806000000000000 0 0
|
|
||||||
66 239 275 0.0260000000000000 0.0720000000000000 0.0350000000000000 0 0
|
|
||||||
67 239 155 0.0950000000000000 0.262000000000000 0.0320000000000000 0 0
|
|
||||||
68 239 84 0.0130000000000000 0.0390000000000000 0.0160000000000000 0 0
|
|
||||||
69 275 154 0.0270000000000000 0.0840000000000000 0.0390000000000000 0 0
|
|
||||||
70 275 157 0.0280000000000000 0.0840000000000000 0.0370000000000000 0 0
|
|
||||||
71 240 87 0.00700000000000000 0.0410000000000000 0.312000000000000 0 0
|
|
||||||
72 240 246 0.00900000000000000 0.0540000000000000 0.411000000000000 0 0
|
|
||||||
73 153 248 0.00500000000000000 0.0420000000000000 0.690000000000000 0 0
|
|
||||||
74 154 277 0.0520000000000000 0.145000000000000 0.0730000000000000 0 0
|
|
||||||
75 154 94 0.0430000000000000 0.118000000000000 0.0130000000000000 0 0
|
|
||||||
76 155 173 0.0250000000000000 0.0620000000000000 0.00700000000000000 0 0
|
|
||||||
77 241 156 0.0310000000000000 0.0940000000000000 0.0430000000000000 0 0
|
|
||||||
78 156 83 0.0370000000000000 0.109000000000000 0.0490000000000000 0 0
|
|
||||||
79 83 242 0.0270000000000000 0.0800000000000000 0.0360000000000000 0 0
|
|
||||||
80 84 157 0.0250000000000000 0.0730000000000000 0.0350000000000000 0 0
|
|
||||||
81 157 242 0.0350000000000000 0.103000000000000 0.0470000000000000 0 0
|
|
||||||
82 242 243 0.0650000000000000 0.169000000000000 0.0820000000000000 0 0
|
|
||||||
83 243 85 0.0460000000000000 0.0800000000000000 0.0360000000000000 0 0
|
|
||||||
84 243 159 0.159000000000000 0.537000000000000 0.0710000000000000 0 0
|
|
||||||
85 85 86 0.00900000000000000 0.0260000000000000 0.00500000000000000 0 0
|
|
||||||
86 86 158 0.00200000000000000 0.0130000000000000 0.0150000000000000 0 0
|
|
||||||
87 87 276 0.00900000000000000 0.0650000000000000 0.485000000000000 0 0
|
|
||||||
88 276 88 0.0160000000000000 0.105000000000000 0.203000000000000 0 0
|
|
||||||
89 276 101 0.00100000000000000 0.00700000000000000 0.0130000000000000 0 0
|
|
||||||
90 159 19 0.0265000000000000 0.172000000000000 0.0260000000000000 0 0
|
|
||||||
91 160 298 0.0510000000000000 0.232000000000000 0.0280000000000000 0 0
|
|
||||||
92 160 247 0.0510000000000000 0.157000000000000 0.0230000000000000 0 0
|
|
||||||
93 89 244 0.0320000000000000 0.100000000000000 0.0620000000000000 0 0
|
|
||||||
94 89 20 0.0200000000000000 0.123400000000000 0.0280000000000000 0 0
|
|
||||||
95 244 245 0.0360000000000000 0.131000000000000 0.0680000000000000 0 0
|
|
||||||
96 244 277 0.0340000000000000 0.0990000000000000 0.0470000000000000 0 0
|
|
||||||
97 245 293 0.0180000000000000 0.0870000000000000 0.0110000000000000 0 0
|
|
||||||
98 245 21 0.0256000000000000 0.193000000000000 0 0 0
|
|
||||||
99 277 161 0.0210000000000000 0.0570000000000000 0.0300000000000000 0 0
|
|
||||||
100 277 247 0.0180000000000000 0.0520000000000000 0.0180000000000000 0 0
|
|
||||||
101 246 164 0.00400000000000000 0.0270000000000000 0.0500000000000000 0 0
|
|
||||||
102 246 23 0.0286000000000000 0.201300000000000 0.379000000000000 0 0
|
|
||||||
103 161 293 0.0160000000000000 0.0430000000000000 0.00400000000000000 0 0
|
|
||||||
104 293 162 0.00100000000000000 0.00600000000000000 0.00700000000000000 0 0
|
|
||||||
105 293 90 0.0140000000000000 0.0700000000000000 0.0380000000000000 0 0
|
|
||||||
106 293 22 0.0891000000000000 0.267600000000000 0.0290000000000000 0 0
|
|
||||||
107 293 24 0.0782000000000000 0.212700000000000 0.0220000000000000 0 0
|
|
||||||
108 162 247 0.00600000000000000 0.0220000000000000 0.0110000000000000 0 0
|
|
||||||
109 162 1 0 0.0360000000000000 0 0 0
|
|
||||||
110 247 298 0.0990000000000000 0.375000000000000 0.0510000000000000 0 0
|
|
||||||
111 90 298 0.0220000000000000 0.107000000000000 0.0580000000000000 0 0
|
|
||||||
112 248 205 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
|
||||||
113 248 206 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
|
||||||
114 91 249 0.00800000000000000 0.0640000000000000 0.128000000000000 0 0
|
|
||||||
115 249 163 0.0120000000000000 0.0930000000000000 0.183000000000000 0 0
|
|
||||||
116 249 17 0.00600000000000000 0.0480000000000000 0.0920000000000000 0 0
|
|
||||||
117 165 167 0.0470000000000000 0.119000000000000 0.0140000000000000 0 0
|
|
||||||
118 166 168 0.0320000000000000 0.174000000000000 0.0240000000000000 0 0
|
|
||||||
119 167 169 0.100000000000000 0.253000000000000 0.0310000000000000 0 0
|
|
||||||
120 167 278 0.0220000000000000 0.0770000000000000 0.0390000000000000 0 0
|
|
||||||
121 168 171 0.0190000000000000 0.144000000000000 0.0170000000000000 0 0
|
|
||||||
122 168 250 0.0170000000000000 0.0920000000000000 0.0120000000000000 0 0
|
|
||||||
123 169 278 0.278000000000000 0.427000000000000 0.0430000000000000 0 0
|
|
||||||
124 278 170 0.0220000000000000 0.0530000000000000 0.00700000000000000 0 0
|
|
||||||
125 278 280 0.0380000000000000 0.0920000000000000 0.0120000000000000 0 0
|
|
||||||
126 278 171 0.0480000000000000 0.122000000000000 0.0150000000000000 0 0
|
|
||||||
127 92 170 0.0240000000000000 0.0640000000000000 0.00700000000000000 0 0
|
|
||||||
128 92 280 0.0340000000000000 0.121000000000000 0.0150000000000000 0 0
|
|
||||||
129 279 173 0.0530000000000000 0.135000000000000 0.0170000000000000 0 0
|
|
||||||
130 279 174 0.00200000000000000 0.00400000000000000 0.00200000000000000 0 0
|
|
||||||
131 279 251 0.0450000000000000 0.354000000000000 0.0440000000000000 0 0
|
|
||||||
132 279 252 0.0500000000000000 0.174000000000000 0.0220000000000000 0 0
|
|
||||||
133 170 280 0.0160000000000000 0.0380000000000000 0.00400000000000000 0 0
|
|
||||||
134 280 172 0.0430000000000000 0.0640000000000000 0.0270000000000000 0 0
|
|
||||||
135 171 250 0.0190000000000000 0.0620000000000000 0.00800000000000000 0 0
|
|
||||||
136 172 174 0.0760000000000000 0.130000000000000 0.0440000000000000 0 0
|
|
||||||
137 172 16 0.0440000000000000 0.124000000000000 0.0150000000000000 0 0
|
|
||||||
138 250 173 0.0120000000000000 0.0880000000000000 0.0110000000000000 0 0
|
|
||||||
139 250 252 0.157000000000000 0.400000000000000 0.0470000000000000 0 0
|
|
||||||
140 174 18 0.0740000000000000 0.208000000000000 0.0260000000000000 0 0
|
|
||||||
141 251 252 0.0700000000000000 0.184000000000000 0.0210000000000000 0 0
|
|
||||||
142 251 94 0.100000000000000 0.274000000000000 0.0310000000000000 0 0
|
|
||||||
143 251 175 0.109000000000000 0.393000000000000 0.0360000000000000 0 0
|
|
||||||
144 252 93 0.142000000000000 0.404000000000000 0.0500000000000000 0 0
|
|
||||||
145 93 175 0.0170000000000000 0.0420000000000000 0.00600000000000000 0 0
|
|
||||||
146 95 256 0.00360000000000000 0.0199000000000000 0.00400000000000000 0 0
|
|
||||||
147 96 255 0.00200000000000000 0.104900000000000 0.00100000000000000 0 0
|
|
||||||
148 97 253 0.000100000000000000 0.00180000000000000 0.0170000000000000 0 0
|
|
||||||
149 253 254 0 0.0271000000000000 0 0 0
|
|
||||||
150 253 142 0 0.616300000000000 0 0 0
|
|
||||||
151 142 255 0 -0.369700000000000 0 0 0
|
|
||||||
152 253 176 0.00220000000000000 0.291500000000000 0 0 0
|
|
||||||
153 254 255 0 0.0339000000000000 0 0 0
|
|
||||||
154 254 176 0 0.0582000000000000 0 0 0
|
|
||||||
155 256 177 0.0808000000000000 0.234400000000000 0.0290000000000000 0 0
|
|
||||||
156 256 179 0.0965000000000000 0.366900000000000 0.0540000000000000 0 0
|
|
||||||
157 177 178 0.0360000000000000 0.107600000000000 0.117000000000000 0 0
|
|
||||||
158 177 179 0.0476000000000000 0.141400000000000 0.149000000000000 0 0
|
|
||||||
159 179 294 0.000600000000000000 0.0197000000000000 0 0 0
|
|
||||||
160 294 257 0.00590000000000000 0.0405000000000000 0.250000000000000 0 0
|
|
||||||
161 294 181 0.0115000000000000 0.110600000000000 0.185000000000000 0 0
|
|
||||||
162 294 182 0.0198000000000000 0.168800000000000 0.321000000000000 0 0
|
|
||||||
163 294 191 0.00500000000000000 0.0500000000000000 0.330000000000000 0 0
|
|
||||||
164 294 192 0.00770000000000000 0.0538000000000000 0.335000000000000 0 0
|
|
||||||
165 294 196 0.0165000000000000 0.115700000000000 0.171000000000000 0 0
|
|
||||||
166 257 180 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
|
||||||
167 257 183 0.00490000000000000 0.0336000000000000 0.208000000000000 0 0
|
|
||||||
168 257 195 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
|
||||||
169 180 299 0.00780000000000000 0.0773000000000000 0.126000000000000 0 0
|
|
||||||
170 180 288 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
|
||||||
171 181 299 0.00760000000000000 0.0752000000000000 0.122000000000000 0 0
|
|
||||||
172 181 288 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
|
||||||
173 299 182 0.00160000000000000 0.0164000000000000 0.0260000000000000 0 0
|
|
||||||
174 299 105 0.00170000000000000 0.0165000000000000 0.0260000000000000 0 0
|
|
||||||
175 299 115 0.00790000000000000 0.0793000000000000 0.127000000000000 0 0
|
|
||||||
176 299 195 0.00780000000000000 0.0784000000000000 0.125000000000000 0 0
|
|
||||||
177 288 295 0.00170000000000000 0.0117000000000000 0.289000000000000 0 0
|
|
||||||
178 288 195 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
|
||||||
179 288 196 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
|
||||||
180 288 2 0.000200000000000000 0.0101000000000000 0 0 0
|
|
||||||
181 183 99 0.00430000000000000 0.0293000000000000 0.180000000000000 0 0
|
|
||||||
182 183 121 0.00390000000000000 0.0381000000000000 0.258000000000000 0 0
|
|
||||||
183 99 184 0.00910000000000000 0.0623000000000000 0.385000000000000 0 0
|
|
||||||
184 184 295 0.0125000000000000 0.0890000000000000 0.540000000000000 0 0
|
|
||||||
185 184 106 0.00560000000000000 0.0390000000000000 0.953000000000000 0 0
|
|
||||||
186 295 296 0.00150000000000000 0.0114000000000000 0.284000000000000 0 0
|
|
||||||
187 295 201 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
|
||||||
188 295 122 0.000700000000000000 0.0151000000000000 0.126000000000000 0 0
|
|
||||||
189 295 262 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
|
||||||
190 185 197 0.0562000000000000 0.224800000000000 0.0810000000000000 0 0
|
|
||||||
191 296 186 0.0120000000000000 0.0836000000000000 0.123000000000000 0 0
|
|
||||||
192 296 187 0.0152000000000000 0.113200000000000 0.684000000000000 0 0
|
|
||||||
193 296 282 0.0468000000000000 0.336900000000000 0.519000000000000 0 0
|
|
||||||
194 296 258 0.0430000000000000 0.303100000000000 0.463000000000000 0 0
|
|
||||||
195 296 102 0.0489000000000000 0.349200000000000 0.538000000000000 0 0
|
|
||||||
196 296 119 0.00130000000000000 0.00890000000000000 0.119000000000000 0 0
|
|
||||||
197 186 258 0.0291000000000000 0.226700000000000 0.342000000000000 0 0
|
|
||||||
198 187 281 0.00600000000000000 0.0570000000000000 0.767000000000000 0 0
|
|
||||||
199 281 282 0.00750000000000000 0.0773000000000000 0.119000000000000 0 0
|
|
||||||
200 281 103 0.0127000000000000 0.0909000000000000 0.135000000000000 0 0
|
|
||||||
201 282 258 0.00850000000000000 0.0588000000000000 0.0870000000000000 0 0
|
|
||||||
202 282 103 0.0218000000000000 0.151100000000000 0.223000000000000 0 0
|
|
||||||
203 258 102 0.00730000000000000 0.0504000000000000 0.0740000000000000 0 0
|
|
||||||
204 188 261 0.0523000000000000 0.152600000000000 0.0740000000000000 0 0
|
|
||||||
205 188 200 0.137100000000000 0.391900000000000 0.0760000000000000 0 0
|
|
||||||
206 106 189 0.0137000000000000 0.0957000000000000 0.141000000000000 0 0
|
|
||||||
207 189 110 0.00550000000000000 0.0288000000000000 0.190000000000000 0 0
|
|
||||||
208 107 108 0.174600000000000 0.316100000000000 0.0400000000000000 0 0
|
|
||||||
209 107 120 0.0804000000000000 0.305400000000000 0.0450000000000000 0 0
|
|
||||||
210 190 110 0.0110000000000000 0.0568000000000000 0.388000000000000 0 0
|
|
||||||
211 191 193 0.000800000000000000 0.00980000000000000 0.0690000000000000 0 0
|
|
||||||
212 192 193 0.00290000000000000 0.0285000000000000 0.190000000000000 0 0
|
|
||||||
213 192 109 0.00660000000000000 0.0448000000000000 0.277000000000000 0 0
|
|
||||||
214 111 194 0.00240000000000000 0.0326000000000000 0.236000000000000 0 0
|
|
||||||
215 111 113 0.00180000000000000 0.0245000000000000 1.66200000000000 0 0
|
|
||||||
216 112 194 0.00440000000000000 0.0514000000000000 3.59700000000000 0 0
|
|
||||||
217 113 114 0.000200000000000000 0.0123000000000000 0 0 0
|
|
||||||
218 115 196 0.00180000000000000 0.0178000000000000 0.0290000000000000 0 0
|
|
||||||
219 197 259 0.0669000000000000 0.484300000000000 0.0630000000000000 0 0
|
|
||||||
220 197 198 0.0558000000000000 0.221000000000000 0.0310000000000000 0 0
|
|
||||||
221 259 198 0.0807000000000000 0.333100000000000 0.0490000000000000 0 0
|
|
||||||
222 259 260 0.0739000000000000 0.307100000000000 0.0430000000000000 0 0
|
|
||||||
223 259 199 0.179900000000000 0.501700000000000 0.0690000000000000 0 0
|
|
||||||
224 260 199 0.0904000000000000 0.362600000000000 0.0480000000000000 0 0
|
|
||||||
225 260 200 0.0770000000000000 0.309200000000000 0.0540000000000000 0 0
|
|
||||||
226 199 117 0.0251000000000000 0.0829000000000000 0.0470000000000000 0 0
|
|
||||||
227 117 261 0.0222000000000000 0.0847000000000000 0.0500000000000000 0 0
|
|
||||||
228 261 200 0.0498000000000000 0.185500000000000 0.0290000000000000 0 0
|
|
||||||
229 261 118 0.00610000000000000 0.0290000000000000 0.0840000000000000 0 0
|
|
||||||
230 201 100 0.000400000000000000 0.0202000000000000 0 0 0
|
|
||||||
231 201 123 0.000400000000000000 0.00830000000000000 0.115000000000000 0 0
|
|
||||||
232 121 3 0.00250000000000000 0.0245000000000000 0.164000000000000 0 0
|
|
||||||
233 122 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
|
||||||
234 123 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
|
||||||
235 262 100 0.000400000000000000 0.0202000000000000 0 0 0
|
|
||||||
236 202 212 0.0330000000000000 0.0950000000000000 0 0 0
|
|
||||||
237 202 131 0.0460000000000000 0.0690000000000000 0 0 0
|
|
||||||
238 203 290 0.000400000000000000 0.00220000000000000 6.20000000000000 0 0
|
|
||||||
239 203 138 0 0.0275000000000000 0 0 0
|
|
||||||
240 124 125 0.00300000000000000 0.0480000000000000 0 0 0
|
|
||||||
241 125 218 0.00200000000000000 0.00900000000000000 0 0 0
|
|
||||||
242 204 210 0.0450000000000000 0.0630000000000000 0 0 0
|
|
||||||
243 204 212 0.0480000000000000 0.127000000000000 0 0 0
|
|
||||||
244 205 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
|
||||||
245 205 25 0.00240000000000000 0.0355000000000000 0.360000000000000 0 0
|
|
||||||
246 206 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
|
||||||
247 263 207 0.0140000000000000 0.0400000000000000 0.00400000000000000 0 0
|
|
||||||
248 263 283 0.0300000000000000 0.0810000000000000 0.0100000000000000 0 0
|
|
||||||
249 207 289 0.0100000000000000 0.0600000000000000 0.00900000000000000 0 0
|
|
||||||
250 207 298 0.0150000000000000 0.0400000000000000 0.00600000000000000 0 0
|
|
||||||
251 289 128 0.332000000000000 0.688000000000000 0 0 0
|
|
||||||
252 289 129 0.00900000000000000 0.0460000000000000 0.0250000000000000 0 0
|
|
||||||
253 289 283 0.0200000000000000 0.0730000000000000 0.00800000000000000 0 0
|
|
||||||
254 289 298 0.0340000000000000 0.109000000000000 0.0320000000000000 0 0
|
|
||||||
255 126 208 0.0760000000000000 0.135000000000000 0.00900000000000000 0 0
|
|
||||||
256 126 283 0.0400000000000000 0.102000000000000 0.00500000000000000 0 0
|
|
||||||
257 208 283 0.0810000000000000 0.128000000000000 0.0140000000000000 0 0
|
|
||||||
258 127 209 0.124000000000000 0.183000000000000 0 0 0
|
|
||||||
259 129 298 0.0100000000000000 0.0590000000000000 0.00800000000000000 0 0
|
|
||||||
260 209 210 0.0460000000000000 0.0680000000000000 0 0 0
|
|
||||||
261 210 211 0.302000000000000 0.446000000000000 0 0 0
|
|
||||||
262 211 130 0.0730000000000000 0.0930000000000000 0 0 0
|
|
||||||
263 211 212 0.240000000000000 0.421000000000000 0 0 0
|
|
||||||
264 213 215 0.0139000000000000 0.0778000000000000 0.0860000000000000 0 0
|
|
||||||
265 214 215 0.00170000000000000 0.0185000000000000 0.0200000000000000 0 0
|
|
||||||
266 214 222 0.00150000000000000 0.0108000000000000 0.00200000000000000 0 0
|
|
||||||
267 215 132 0.00450000000000000 0.0249000000000000 0.0260000000000000 0 0
|
|
||||||
268 132 264 0.00400000000000000 0.0497000000000000 0.0180000000000000 0 0
|
|
||||||
269 264 216 0 0.0456000000000000 0 0 0
|
|
||||||
270 264 284 0.000500000000000000 0.0177000000000000 0.0200000000000000 0 0
|
|
||||||
271 264 265 0.00270000000000000 0.0395000000000000 0.832000000000000 0 0
|
|
||||||
272 284 285 0.000300000000000000 0.00180000000000000 5.20000000000000 0 0
|
|
||||||
273 265 216 0.00370000000000000 0.0484000000000000 0.430000000000000 0 0
|
|
||||||
274 265 133 0.00100000000000000 0.0295000000000000 0.503000000000000 0 0
|
|
||||||
275 265 221 0.00160000000000000 0.00460000000000000 0.402000000000000 0 0
|
|
||||||
276 133 134 0.000300000000000000 0.00130000000000000 1 0 0
|
|
||||||
277 217 218 0.0100000000000000 0.0640000000000000 0.480000000000000 0 0
|
|
||||||
278 217 135 0.00190000000000000 0.00810000000000000 0.860000000000000 0 0
|
|
||||||
279 218 124 0.00100000000000000 0.0610000000000000 0 0 0
|
|
||||||
280 135 290 0.000500000000000000 0.0212000000000000 0 0 0
|
|
||||||
281 219 220 0.00190000000000000 0.00870000000000000 1.28000000000000 0 0
|
|
||||||
282 219 290 0.00260000000000000 0.0917000000000000 0 0 0
|
|
||||||
283 219 266 0.00130000000000000 0.0288000000000000 0.810000000000000 0 0
|
|
||||||
284 220 203 0 0.0626000000000000 0 0 0
|
|
||||||
285 290 136 0.000200000000000000 0.00690000000000000 1.36400000000000 0 0
|
|
||||||
286 290 285 0.000100000000000000 0.000600000000000000 3.57000000000000 0 0
|
|
||||||
287 136 8 0.00170000000000000 0.0485000000000000 0 0 0
|
|
||||||
288 266 137 0.000200000000000000 0.0259000000000000 0.144000000000000 0 0
|
|
||||||
289 266 285 0.000600000000000000 0.0272000000000000 0 0 0
|
|
||||||
290 137 221 0.000200000000000000 0.000600000000000000 0.800000000000000 0 0
|
|
||||||
291 138 13 0.000300000000000000 0.00430000000000000 0.00900000000000000 0 0
|
|
||||||
292 222 267 0.00820000000000000 0.0851000000000000 0 0 0
|
|
||||||
293 222 268 0.0112000000000000 0.0723000000000000 0 0 0
|
|
||||||
294 139 140 0.0127000000000000 0.0355000000000000 0 0 0
|
|
||||||
295 139 267 0.0326000000000000 0.180400000000000 0 0 0
|
|
||||||
296 140 223 0.0195000000000000 0.0551000000000000 0 0 0
|
|
||||||
297 267 223 0.0157000000000000 0.0732000000000000 0 0 0
|
|
||||||
298 267 268 0.0360000000000000 0.211900000000000 0 0 0
|
|
||||||
299 223 268 0.0268000000000000 0.128500000000000 0 0 0
|
|
||||||
300 268 224 0.0428000000000000 0.121500000000000 0 0 0
|
|
||||||
301 224 141 0.0351000000000000 0.100400000000000 0 0 0
|
|
||||||
302 141 12 0.0616000000000000 0.185700000000000 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
97 3.25000000000000 0 0 0 0 0 0
|
|
||||||
255 0.550000000000000 0 0 0 0 0 0
|
|
||||||
107 0.345000000000000 0 0 0 0 0 0
|
|
||||||
194 -2.12000000000000 0 0 0 0 0 0
|
|
||||||
114 -1.03000000000000 0 0 0 0 0 0
|
|
||||||
259 0.530000000000000 0 0 0 0 0 0
|
|
||||||
200 0.450000000000000 0 0 0 0 0 0
|
|
||||||
203 -1.50000000000000 0 0 0 0 0 0
|
|
||||||
290 -3 0 0 0 0 0 0
|
|
||||||
221 -1.50000000000000 0 0 0 0 0 0
|
|
||||||
138 -1.40000000000000 0 0 0 0 0 0
|
|
||||||
224 0.456000000000000 0 0 0 0 0 0
|
|
||||||
300 0.0240000000000000 0 0 0 0 0 0
|
|
||||||
54 0.0170000000000000 0 0 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
1 297 269 0.000100000000000000 0.000500000000000000 1.00820000000000 0.904300000000000 1.10430000000000
|
|
||||||
2 269 226 0.0244000000000000 0.436800000000000 0.966800000000000 0.939100000000000 1.14780000000000
|
|
||||||
3 269 227 0.0362000000000000 0.649000000000000 0.979600000000000 0.939100000000000 1.14780000000000
|
|
||||||
4 291 62 0.0158000000000000 0.374900000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
|
||||||
5 291 63 0.0158000000000000 0.374900000000000 0.939100000000000 0.939100000000000 1.14780000000000
|
|
||||||
6 291 145 0.0160000000000000 0.380500000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
|
||||||
7 291 64 0 0.152000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
|
||||||
8 291 65 0 0.800000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
|
||||||
9 228 47 0.443600000000000 2.81520000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
10 225 48 0.507500000000000 3.22020000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
11 229 49 0.666900000000000 3.94400000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
12 229 50 0.611300000000000 3.61520000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
13 271 66 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
14 271 67 0.307900000000000 2.05700000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
15 300 51 0.736300000000000 4.67240000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
16 300 52 0.769800000000000 4.88460000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
17 300 53 0.757300000000000 4.80560000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
18 270 59 0.366100000000000 2.45600000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
19 270 60 1.05930000000000 5.45360000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
20 270 61 0.156700000000000 1.69940000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
21 300 54 0.130100000000000 1.39120000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
22 300 55 0.544800000000000 3.45720000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
23 300 56 0.154300000000000 1.67290000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
24 300 57 0.384900000000000 2.57120000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
25 300 58 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
26 145 69 0 0.750000000000000 0.958300000000000 0.939100000000000 1.10000000000000
|
|
||||||
27 4 214 0.00250000000000000 0.0380000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
28 5 285 0.00140000000000000 0.0514000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
29 6 290 0.000900000000000000 0.0472000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
30 11 285 0.000500000000000000 0.0154000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
31 292 146 0 0.0520000000000000 0.947000000000000 0.900000000000000 1.10000000000000
|
|
||||||
32 292 230 0 0.0520000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
|
||||||
33 292 70 0 0.00500000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
|
||||||
34 272 147 0 0.0390000000000000 0.948000000000000 0.900000000000000 1.10000000000000
|
|
||||||
35 272 71 0 0.0390000000000000 0.959000000000000 0.900000000000000 1.10000000000000
|
|
||||||
36 73 273 0 0.0890000000000000 1.04600000000000 0.900000000000000 1.10000000000000
|
|
||||||
37 231 73 0 0.0530000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
|
||||||
38 286 76 0.0194000000000000 0.0311000000000000 0.956100000000000 0.900000000000000 1.10000000000000
|
|
||||||
39 149 286 0.00100000000000000 0.0380000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
|
||||||
40 233 232 0 0.0140000000000000 0.952000000000000 0.900000000000000 1.10000000000000
|
|
||||||
41 235 234 0 0.0640000000000000 0.943000000000000 0.900000000000000 1.10000000000000
|
|
||||||
42 81 237 0 0.0470000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
|
||||||
43 240 275 0 0.0200000000000000 1.00800000000000 0.900000000000000 1.10000000000000
|
|
||||||
44 240 153 0 0.0210000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
45 276 158 0 0.0590000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
|
||||||
46 159 88 0 0.0380000000000000 1.01700000000000 0.900000000000000 1.10000000000000
|
|
||||||
47 277 246 0 0.0244000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
48 248 164 0 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
49 91 279 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
50 249 280 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
51 163 169 0 0.0460000000000000 1.01500000000000 0.900000000000000 1.10000000000000
|
|
||||||
52 175 130 0 0.149000000000000 0.967000000000000 0.900000000000000 1.10000000000000
|
|
||||||
53 96 178 0.00520000000000000 0.0174000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
|
||||||
54 176 95 0 0.0280000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
55 256 191 0.000500000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
56 299 98 0 0.0180000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
|
||||||
57 299 104 0 0.0140000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
|
||||||
58 182 116 0.00100000000000000 0.0402000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
59 186 198 0.00240000000000000 0.0603000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
|
||||||
60 187 260 0.00240000000000000 0.0498000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
61 281 101 0 0.0833000000000000 1.03500000000000 0.900000000000000 1.10000000000000
|
|
||||||
62 281 188 0.00130000000000000 0.0371000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
|
||||||
63 282 118 0.000500000000000000 0.0182000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
64 105 116 0.00100000000000000 0.0392000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
65 189 120 0.00270000000000000 0.0639000000000000 1.07300000000000 0.900000000000000 1.10000000000000
|
|
||||||
66 190 108 0.000800000000000000 0.0256000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
67 193 97 0 0.0160000000000000 1.05060000000000 0.900000000000000 1.10000000000000
|
|
||||||
68 109 178 0.00120000000000000 0.0396000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
|
||||||
69 112 295 0.00130000000000000 0.0384000000000000 0.980000000000000 0.900000000000000 1.10000000000000
|
|
||||||
70 194 190 0.000900000000000000 0.0231000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
|
||||||
71 119 185 0.000300000000000000 0.0131000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
72 202 283 0 0.252000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
73 204 263 0 0.237000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
74 206 213 0.000800000000000000 0.0366000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
|
||||||
75 208 224 0 0.220000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
76 127 160 0 0.0980000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
77 128 298 0 0.128000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
|
||||||
78 209 143 0.0200000000000000 0.204000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
79 131 289 0.0260000000000000 0.211000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
80 298 213 0.00300000000000000 0.0122000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
81 216 284 0.00300000000000000 0.0122000000000000 0.970000000000000 0.900000000000000 1.10000000000000
|
|
||||||
82 134 217 0.00120000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
83 220 7 0.00100000000000000 0.0332000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
|
||||||
84 266 9 0.000500000000000000 0.0160000000000000 1.07000000000000 0.900000000000000 1.10000000000000
|
|
||||||
85 221 10 0.000500000000000000 0.0160000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
|
||||||
86 263 143 0.000100000000000000 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
87 254 26 0.00100000000000000 0.0230000000000000 1.02230000000000 0.900000000000000 1.10000000000000
|
|
||||||
88 255 27 0 0.0230000000000000 0.928400000000000 0.900000000000000 1.10000000000000
|
|
||||||
89 29 230 0.00100000000000000 0.0146000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
90 30 292 0 0.0105000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
91 41 158 0 0.0238000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
92 42 276 0 0.0321000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
|
||||||
93 46 114 0 0.0154000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
94 35 235 0 0.0289000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
95 28 146 0 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
96 44 299 0 0.0193000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
97 31 273 0 0.0192000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
98 34 234 0 0.0230000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
99 38 241 0 0.0124000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
100 45 185 0 0.0167000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
101 32 231 0 0.0312000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
102 33 76 0 0.0165000000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
|
||||||
103 36 82 0 0.0316000000000000 0.965000000000000 0.900000000000000 1.10000000000000
|
|
||||||
104 40 243 0 0.0535000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
|
||||||
105 37 275 0 0.181800000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
|
||||||
106 39 242 0 0.196100000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
|
||||||
107 43 244 0 0.0690000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
1 375 0 37 13 0 0 0
|
|
||||||
2 0 0 763.600000000000 291.100000000000 0 0 0
|
|
||||||
3 200 0 0 0 0 0 0
|
|
||||||
4 272 0 0 0 0 0 0
|
|
||||||
5 250 0 328 188 0 0 0
|
|
||||||
6 303 0 538 369 0 0 0
|
|
||||||
7 345 0 0 0 0 0 0
|
|
||||||
8 300 0 404 212 0 0 0
|
|
||||||
9 600 0 0 0 0 0 0
|
|
||||||
10 550 0 0 0 0 0 0
|
|
||||||
11 575.430000000000 0 0 0 0 0 0
|
|
||||||
12 0 0 -23 -17 0 0 0
|
|
||||||
13 0 0 -33.1000000000000 -29.4000000000000 0 0 0
|
|
||||||
14 0 0 115.800000000000 -24 0 0 0
|
|
||||||
15 0 0 2.40000000000000 -12.6000000000000 0 0 0
|
|
||||||
16 0 0 2.40000000000000 -3.90000000000000 0 0 0
|
|
||||||
17 0 0 -14.9000000000000 26.5000000000000 0 0 0
|
|
||||||
18 0 0 24.7000000000000 -1.20000000000000 0 0 0
|
|
||||||
19 0 0 145.300000000000 -34.9000000000000 0 0 0
|
|
||||||
20 0 0 28.1000000000000 -20.5000000000000 0 0 0
|
|
||||||
21 0 0 14 2.50000000000000 0 0 0
|
|
||||||
22 0 0 -11.1000000000000 -1.40000000000000 0 0 0
|
|
||||||
23 0 0 50.5000000000000 17.4000000000000 0 0 0
|
|
||||||
24 0 0 29.6000000000000 0.600000000000000 0 0 0
|
|
||||||
25 0 0 -113.700000000000 76.7000000000000 0 0 0
|
|
||||||
26 0 0 100.310000000000 29.1700000000000 0 0 0
|
|
||||||
27 0 0 -100 34.1700000000000 0 0 0
|
|
||||||
28 467 0 0 0 0 0 0
|
|
||||||
29 623 0 0 0 0 0 0
|
|
||||||
30 1210 0 0 0 0 0 0
|
|
||||||
31 234 0 0 0 0 0 0
|
|
||||||
32 372 0 0 0 0 0 0
|
|
||||||
33 330 0 0 0 0 0 0
|
|
||||||
34 185 0 0 0 0 0 0
|
|
||||||
35 410 0 0 0 0 0 0
|
|
||||||
36 500 0 0 0 0 0 0
|
|
||||||
37 37 0 0 0 0 0 0
|
|
||||||
38 0 0 0 0 0 0 0
|
|
||||||
39 45 0 0 0 0 0 0
|
|
||||||
40 165 0 0 0 0 0 0
|
|
||||||
41 400 0 0 0 0 0 0
|
|
||||||
42 400 0 0 0 0 0 0
|
|
||||||
43 116 0 0 0 0 0 0
|
|
||||||
44 1292 0 0 0 0 0 0
|
|
||||||
45 700 0 0 0 0 0 0
|
|
||||||
46 553 0 0 0 0 0 0
|
|
||||||
47 0 0 1.53000000000000 0.530000000000000 0 0 0
|
|
||||||
48 0 0 1.35000000000000 0.470000000000000 0 0 0
|
|
||||||
49 0 0 0.450000000000000 0.160000000000000 0 0 0
|
|
||||||
50 0 0 0.450000000000000 0.160000000000000 0 0 0
|
|
||||||
51 0 0 1.84000000000000 0.640000000000000 0 0 0
|
|
||||||
52 0 0 1.39000000000000 0.480000000000000 0 0 0
|
|
||||||
53 0 0 1.89000000000000 0.650000000000000 0 0 0
|
|
||||||
54 0 0 1.55000000000000 0.540000000000000 0 0 0
|
|
||||||
55 0 0 1.66000000000000 0.580000000000000 0 0 0
|
|
||||||
56 0 0 3.03000000000000 1 0 0 0
|
|
||||||
57 0 0 1.86000000000000 0.640000000000000 0 0 0
|
|
||||||
58 0 0 2.58000000000000 0.890000000000000 0 0 0
|
|
||||||
59 0 0 1.01000000000000 0.350000000000000 0 0 0
|
|
||||||
60 0 0 0.810000000000000 0.280000000000000 0 0 0
|
|
||||||
61 0 0 1.60000000000000 0.520000000000000 0 0 0
|
|
||||||
62 -35.8100000000000 0 0 0 0 0 0
|
|
||||||
63 0 0 30 23 0 0 0
|
|
||||||
64 50 0 0 0 0 0 0
|
|
||||||
65 8 0 0 0 0 0 0
|
|
||||||
66 0 0 1.02000000000000 0.350000000000000 0 0 0
|
|
||||||
67 0 0 1.02000000000000 0.350000000000000 0 0 0
|
|
||||||
68 0 0 3.80000000000000 1.25000000000000 0 0 0
|
|
||||||
69 0 0 1.19000000000000 0.410000000000000 0 0 0
|
|
||||||
70 0 0 0 0 0 0 0
|
|
||||||
71 0 0 120 41 0 0 0
|
|
||||||
72 0 0 96 43 0 0 0
|
|
||||||
73 -5 0 148 33 0 0 0
|
|
||||||
74 0 0 58 10 0 0 0
|
|
||||||
75 0 0 160 60 0 0 0
|
|
||||||
76 0 0 561 220 0 0 0
|
|
||||||
77 0 0 81 23 0 0 0
|
|
||||||
78 0 0 45 12 0 0 0
|
|
||||||
79 0 0 69 13 0 0 0
|
|
||||||
80 0 0 0 0 0 0 0
|
|
||||||
81 0 0 0 0 0 0 0
|
|
||||||
82 0 0 0 0 0 0 0
|
|
||||||
83 0 0 61 28 0 0 0
|
|
||||||
84 0 0 69 3 0 0 0
|
|
||||||
85 0 0 14 1 0 0 0
|
|
||||||
86 0 0 218 106 0 0 0
|
|
||||||
87 0 0 0 0 0 0 0
|
|
||||||
88 0 0 0 0 0 0 0
|
|
||||||
89 0 0 56 20 0 0 0
|
|
||||||
90 0 0 28 7 0 0 0
|
|
||||||
91 0 0 0 0 0 0 0
|
|
||||||
92 68 0 66.7000000000000 0 0 0 0
|
|
||||||
93 0 0 19.6000000000000 0 0 0 0
|
|
||||||
94 0 0 26.2000000000000 0 0 0 0
|
|
||||||
95 0 0 0 0 0 0 0
|
|
||||||
96 0 0 0 0 0 0 0
|
|
||||||
97 0 0 0 0 0 0 0
|
|
||||||
98 0 0 0 0 0 0 0
|
|
||||||
99 0 0 169.200000000000 41.6000000000000 0 0 0
|
|
||||||
100 -192.500000000000 0 826.700000000000 135.200000000000 0 0 0
|
|
||||||
101 0 0 0 0 0 0 0
|
|
||||||
102 217 0 0 0 0 0 0
|
|
||||||
103 103 0 0 0 0 0 0
|
|
||||||
104 0 0 0 0 0 0 0
|
|
||||||
105 0 0 0 0 0 0 0
|
|
||||||
106 372 0 17 9 0 0 0
|
|
||||||
107 0 0 70 5 0 0 0
|
|
||||||
108 0 0 75 50 0 0 0
|
|
||||||
109 0 0 0 0 0 0 0
|
|
||||||
110 0 0 35 15 0 0 0
|
|
||||||
111 0 0 85 24 0 0 0
|
|
||||||
112 0 0 0 0.400000000000000 0 0 0
|
|
||||||
113 0 0 0 0 0 0 0
|
|
||||||
114 0 0 0 0 0 0 0
|
|
||||||
115 0 0 299.900000000000 95.7000000000000 0 0 0
|
|
||||||
116 205 0 481.800000000000 205 0 0 0
|
|
||||||
117 84 0 28 12 0 0 0
|
|
||||||
118 0 0 69.5000000000000 49.3000000000000 0 0 0
|
|
||||||
119 0 0 240.700000000000 89 0 0 0
|
|
||||||
120 0 0 40 4 0 0 0
|
|
||||||
121 0 0 136.800000000000 16.6000000000000 0 0 0
|
|
||||||
122 1200 0 59.8000000000000 24.3000000000000 0 0 0
|
|
||||||
123 1200 0 59.8000000000000 24.3000000000000 0 0 0
|
|
||||||
124 1973 0 489 53 0 0 0
|
|
||||||
125 0 0 800 72 0 0 0
|
|
||||||
126 0 0 35 12 0 0 0
|
|
||||||
127 0 0 41 14 0 0 0
|
|
||||||
128 0 0 38 13 0 0 0
|
|
||||||
129 0 0 42 14 0 0 0
|
|
||||||
130 0 0 -21 -14.2000000000000 0 0 0
|
|
||||||
131 0 0 38 13 0 0 0
|
|
||||||
132 0 0 176 105 0 0 0
|
|
||||||
133 450 0 171 70 0 0 0
|
|
||||||
134 0 0 428 232 0 0 0
|
|
||||||
135 0 0 0 0 0 0 0
|
|
||||||
136 0 0 448 143 0 0 0
|
|
||||||
137 0 0 269 157 0 0 0
|
|
||||||
138 0 0 0 0 0 0 0
|
|
||||||
139 84 0 8 3 0 0 0
|
|
||||||
140 0 0 0 0 0 0 0
|
|
||||||
141 0 0 29 14 0 0 0
|
|
||||||
142 0 0 0 0 0 0 0
|
|
||||||
143 0 0 0 0 0 0 0
|
|
||||||
144 0 0 0 0 0 0 0
|
|
||||||
145 -26.4800000000000 0 0 0 0 0 0
|
|
||||||
146 0 0 90 49 0 0 0
|
|
||||||
147 0 0 353 130 0 0 0
|
|
||||||
148 -5 0 58 14 0 0 0
|
|
||||||
149 0 0 0 0 0 0 0
|
|
||||||
150 0 0 0 0 0 0 0
|
|
||||||
151 0 0 28 9 0 0 0
|
|
||||||
152 0 0 46 -21 0 0 0
|
|
||||||
153 0 0 0 0 0 0 0
|
|
||||||
154 0 0 58 11.8000000000000 0 0 0
|
|
||||||
155 0 0 41 19 0 0 0
|
|
||||||
156 0 0 -5 5 0 0 0
|
|
||||||
157 0 0 10 1 0 0 0
|
|
||||||
158 0 0 227 110 0 0 0
|
|
||||||
159 0 0 70 30 0 0 0
|
|
||||||
160 0 0 0 0 0 0 0
|
|
||||||
161 0 0 208 107 0 0 0
|
|
||||||
162 0 0 0 0 0 0 0
|
|
||||||
163 0 0 0 0 0 0 0
|
|
||||||
164 0 0 0 0 0 0 0
|
|
||||||
165 0 0 44.2000000000000 0 0 0 0
|
|
||||||
166 0 0 66 0 0 0 0
|
|
||||||
167 155 0 17.4000000000000 0 0 0 0
|
|
||||||
168 290 0 15.8000000000000 0 0 0 0
|
|
||||||
169 0 0 60.3000000000000 0 0 0 0
|
|
||||||
170 0 0 0 0 0 0 0
|
|
||||||
171 0 0 32 0 0 0 0
|
|
||||||
172 0 0 8.60000000000000 0 0 0 0
|
|
||||||
173 0 0 4.60000000000000 0 0 0 0
|
|
||||||
174 117 0 112.100000000000 0 0 0 0
|
|
||||||
175 0 0 18.2000000000000 0 0 0 0
|
|
||||||
176 0 0 535 55 0 0 0
|
|
||||||
177 0 0 78 1.40000000000000 0 0 0
|
|
||||||
178 240 0 276.400000000000 59.3000000000000 0 0 0
|
|
||||||
179 0 0 514.800000000000 82.7000000000000 0 0 0
|
|
||||||
180 0 0 0 0 0 0 0
|
|
||||||
181 0 0 0 0 0 0 0
|
|
||||||
182 0 0 0 0 0 0 0
|
|
||||||
183 0 0 0 0 0 0 0
|
|
||||||
184 0 0 55.2000000000000 18.2000000000000 0 0 0
|
|
||||||
185 0 0 595 83.3000000000000 0 0 0
|
|
||||||
186 281 0 145 58 0 0 0
|
|
||||||
187 0 0 56.5000000000000 24.5000000000000 0 0 0
|
|
||||||
188 0 0 63 25 0 0 0
|
|
||||||
189 216 0 0 0 0 0 0
|
|
||||||
190 0 0 200 50 0 0 0
|
|
||||||
191 0 0 123.500000000000 -24.3000000000000 0 0 0
|
|
||||||
192 0 0 0 0 0 0 0
|
|
||||||
193 0 0 33 16.5000000000000 0 0 0
|
|
||||||
194 0 0 0 0 0 0 0
|
|
||||||
195 0 0 0 0 0 0 0
|
|
||||||
196 0 0 0 0 0 0 0
|
|
||||||
197 0 0 26.5000000000000 0 0 0 0
|
|
||||||
198 0 0 0 0 0 0 0
|
|
||||||
199 228 0 5 4 0 0 0
|
|
||||||
200 0 0 74 29 0 0 0
|
|
||||||
201 0 0 73.4000000000000 0 0 0 0
|
|
||||||
202 0 0 7 2 0 0 0
|
|
||||||
203 475 0 0 0 0 0 0
|
|
||||||
204 0 0 0 0 0 0 0
|
|
||||||
205 0 0 0 0 0 0 0
|
|
||||||
206 0 0 0 0 0 0 0
|
|
||||||
207 0 0 43 14 0 0 0
|
|
||||||
208 0 0 27 12 0 0 0
|
|
||||||
209 0 0 72 24 0 0 0
|
|
||||||
210 0 0 0 -5 0 0 0
|
|
||||||
211 0 0 12 2 0 0 0
|
|
||||||
212 0 0 7 2 0 0 0
|
|
||||||
213 0 0 0 0 0 0 0
|
|
||||||
214 0 0 22 16 0 0 0
|
|
||||||
215 0 0 47 26 0 0 0
|
|
||||||
216 0 0 131 96 0 0 0
|
|
||||||
217 0 0 173 99 0 0 0
|
|
||||||
218 0 0 410 40 0 0 0
|
|
||||||
219 0 0 223 148 0 0 0
|
|
||||||
220 0 0 96 46 0 0 0
|
|
||||||
221 250 0 255 149 0 0 0
|
|
||||||
222 170 0 0 0 0 0 0
|
|
||||||
223 0 0 77 33 0 0 0
|
|
||||||
224 0 0 29 14 0 0 0
|
|
||||||
225 -4.20000000000000 0 0 0 0 0 0
|
|
||||||
226 0 0 0 0 0 0 0
|
|
||||||
227 0 0 0 0 0 0 0
|
|
||||||
228 0 0 4.75000000000000 1.56000000000000 0 0 0
|
|
||||||
229 0 0 0 0 0 0 0
|
|
||||||
230 0 0 56 15 0 0 0
|
|
||||||
231 0 0 0 0 0 0 0
|
|
||||||
232 -10 0 595 120 0 0 0
|
|
||||||
233 0 0 77 1 0 0 0
|
|
||||||
234 0 0 21 7 0 0 0
|
|
||||||
235 0 0 0 0 0 0 0
|
|
||||||
236 0 0 55 6 0 0 0
|
|
||||||
237 0 0 0 0 0 0 0
|
|
||||||
238 0 0 155 18 0 0 0
|
|
||||||
239 0 0 39 9 0 0 0
|
|
||||||
240 0 0 0 0 0 0 0
|
|
||||||
241 0 0 92 26 0 0 0
|
|
||||||
242 0 0 22 10 0 0 0
|
|
||||||
243 0 0 98 20 0 0 0
|
|
||||||
244 0 0 116 38 0 0 0
|
|
||||||
245 0 0 57 19 0 0 0
|
|
||||||
246 0 0 0 0 0 0 0
|
|
||||||
247 0 0 48 14 0 0 0
|
|
||||||
248 0 0 0 0 0 0 0
|
|
||||||
249 0 0 0 0 0 0 0
|
|
||||||
250 0 0 49.6000000000000 0 0 0 0
|
|
||||||
251 0 0 30.7000000000000 0 0 0 0
|
|
||||||
252 0 0 63 0 0 0 0
|
|
||||||
253 0 0 14.1000000000000 650 0 0 0
|
|
||||||
254 1930 0 0 0 0 0 0
|
|
||||||
255 0 0 777 215 0 0 0
|
|
||||||
256 0 0 229.100000000000 11.8000000000000 0 0 0
|
|
||||||
257 0 0 380.800000000000 37 0 0 0
|
|
||||||
258 84 0 0 0 0 0 0
|
|
||||||
259 0 0 163.500000000000 43 0 0 0
|
|
||||||
260 0 0 176 83 0 0 0
|
|
||||||
261 0 0 427.400000000000 173.600000000000 0 0 0
|
|
||||||
262 0 0 182.600000000000 43.6000000000000 0 0 0
|
|
||||||
263 0 0 10 3 0 0 0
|
|
||||||
264 0 0 100 75 0 0 0
|
|
||||||
265 100 0 285 100 0 0 0
|
|
||||||
266 0 0 572 244 0 0 0
|
|
||||||
267 0 0 61 30 0 0 0
|
|
||||||
268 0 0 61 30 0 0 0
|
|
||||||
269 0 0 0 0 0 0 0
|
|
||||||
270 0 0 0.860000000000000 0.280000000000000 0 0 0
|
|
||||||
271 0 0 0 0 0 0 0
|
|
||||||
272 0 0 0 0 0 0 0
|
|
||||||
273 0 0 83 21 0 0 0
|
|
||||||
274 0 0 0 0 0 0 0
|
|
||||||
275 0 0 195 29 0 0 0
|
|
||||||
276 0 0 0 0 0 0 0
|
|
||||||
277 0 0 224 71 0 0 0
|
|
||||||
278 0 0 39.9000000000000 0 0 0 0
|
|
||||||
279 0 0 83.5000000000000 0 0 0 0
|
|
||||||
280 0 0 77.8000000000000 0 0 0 0
|
|
||||||
281 696 0 89.5000000000000 35.5000000000000 0 0 0
|
|
||||||
282 0 0 24 14 0 0 0
|
|
||||||
283 0 0 0 0 0 0 0
|
|
||||||
284 0 0 0 0 0 0 0
|
|
||||||
285 0 0 0 0 0 0 0
|
|
||||||
286 0 0 126.700000000000 23 0 0 0
|
|
||||||
287 0 0 86 0 0 0 0
|
|
||||||
288 0 0 0 0 0 0 0
|
|
||||||
289 424 0 64 21 0 0 0
|
|
||||||
290 0 0 159 107 0 0 0
|
|
||||||
291 0 0 0 0 0 0 0
|
|
||||||
292 0 0 20 0 0 0 0
|
|
||||||
293 0 0 74 28 0 0 0
|
|
||||||
294 0 0 57.9000000000000 5.10000000000000 0 0 0
|
|
||||||
295 0 0 273.600000000000 99.8000000000000 0 0 0
|
|
||||||
296 0 0 387.700000000000 114.700000000000 0 0 0
|
|
||||||
297 0 0 85 32 0 0 0
|
|
||||||
298 0 0 96 7 0 0 0
|
|
||||||
299 0 0 0 0 0 0 0
|
|
||||||
300 0 0 2.71000000000000 0.940000000000000 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
148 1.01530000000000 -10 10 0 0 0 0
|
|
||||||
73 1.02050000000000 -20 20 0 0 0 0
|
|
||||||
232 1.00100000000000 -20 20 0 0 0 0
|
|
||||||
159 0.958300000000000 -25 25 0 0 0 0
|
|
||||||
161 0.963200000000000 12 35 0 0 0 0
|
|
||||||
1 1.02500000000000 -240 240 0 0 0 0
|
|
||||||
167 1.05200000000000 -11 96 0 0 0 0
|
|
||||||
168 1.05200000000000 -153 153 0 0 0 0
|
|
||||||
92 1 -30 56 0 0 0 0
|
|
||||||
174 0.990000000000000 -24 77 0 0 0 0
|
|
||||||
254 1.04350000000000 -500 1500 0 0 0 0
|
|
||||||
178 1.02330000000000 -60 120 0 0 0 0
|
|
||||||
179 1.01030000000000 -25 200 0 0 0 0
|
|
||||||
100 1.05500000000000 -125 350 0 0 0 0
|
|
||||||
186 1.05100000000000 -50 75 0 0 0 0
|
|
||||||
281 1.04350000000000 -100 300 0 0 0 0
|
|
||||||
258 1.05280000000000 -15 35 0 0 0 0
|
|
||||||
102 1.05280000000000 -50 100 0 0 0 0
|
|
||||||
103 1.07350000000000 -25 50 0 0 0 0
|
|
||||||
106 1.05350000000000 -50 175 0 0 0 0
|
|
||||||
189 1.04350000000000 -50 90 0 0 0 0
|
|
||||||
108 0.963000000000000 -10 15 0 0 0 0
|
|
||||||
116 0.929000000000000 -40 90 0 0 0 0
|
|
||||||
2 0.982900000000000 -50 150 0 0 0 0
|
|
||||||
199 1.05220000000000 -45 90 0 0 0 0
|
|
||||||
117 1.00770000000000 -15 35 0 0 0 0
|
|
||||||
3 1.05220000000000 -50 80 0 0 0 0
|
|
||||||
122 1.06500000000000 -100 400 0 0 0 0
|
|
||||||
123 1.06500000000000 -100 400 0 0 0 0
|
|
||||||
203 1.05510000000000 -300 300 0 0 0 0
|
|
||||||
124 1.04350000000000 -1000 1000 0 0 0 0
|
|
||||||
289 1.01500000000000 -260 260 0 0 0 0
|
|
||||||
4 1.01000000000000 -150 150 0 0 0 0
|
|
||||||
265 1.00800000000000 -60 60 0 0 0 0
|
|
||||||
133 1 -320 320 0 0 0 0
|
|
||||||
5 1.05000000000000 -300 300 0 0 0 0
|
|
||||||
6 1 -300 300 0 0 0 0
|
|
||||||
7 1.04000000000000 -250 250 0 0 0 0
|
|
||||||
8 1 -500 500 0 0 0 0
|
|
||||||
9 1.01650000000000 -300 300 0 0 0 0
|
|
||||||
221 1.01000000000000 -200 200 0 0 0 0
|
|
||||||
10 1 -400 400 0 0 0 0
|
|
||||||
11 1.05000000000000 -600 600 0 0 0 0
|
|
||||||
222 0.993000000000000 40 100 0 0 0 0
|
|
||||||
139 1.01000000000000 40 80 0 0 0 0
|
|
||||||
28 1.05070000000000 -210 210 0 0 0 0
|
|
||||||
29 1.05070000000000 -280 280 0 0 0 0
|
|
||||||
30 1.03230000000000 -420 420 0 0 0 0
|
|
||||||
31 1.01450000000000 -100 100 0 0 0 0
|
|
||||||
32 1.01450000000000 -224 224 0 0 0 0
|
|
||||||
33 1.05070000000000 0 350 0 0 0 0
|
|
||||||
34 1.05070000000000 0 120 0 0 0 0
|
|
||||||
35 1.02900000000000 -224 224 0 0 0 0
|
|
||||||
36 1.05000000000000 -200 200 0 0 0 0
|
|
||||||
37 1.01450000000000 0 42 0 0 0 0
|
|
||||||
38 1.05070000000000 -500 500 0 0 0 0
|
|
||||||
39 0.996700000000000 0 25 0 0 0 0
|
|
||||||
40 1.02120000000000 -90 90 0 0 0 0
|
|
||||||
41 1.01450000000000 -150 150 0 0 0 0
|
|
||||||
42 1.00170000000000 0 150 0 0 0 0
|
|
||||||
43 0.989300000000000 0 87 0 0 0 0
|
|
||||||
44 1.05070000000000 -100 600 0 0 0 0
|
|
||||||
45 1.05070000000000 -125 325 0 0 0 0
|
|
||||||
46 1.01450000000000 -200 300 0 0 0 0
|
|
||||||
225 0.994500000000000 -2 2 0 0 0 0
|
|
||||||
62 1 -17.3500000000000 17.3500000000000 0 0 0 0
|
|
||||||
145 1 -12.8000000000000 12.8300000000000 0 0 0 0
|
|
||||||
64 1 -38 38 0 0 0 0
|
|
||||||
65 1 -6 6 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
5 0.200000000000000 0.200000000000000 0.137500000000000 210 600 0 0
|
|
||||||
4 0.300000000000000 0.175000000000000 0.175000000000000 200 580 0 0
|
|
||||||
9 0.300000000000000 0.125000000000000 0.100000000000000 200 800 0 0
|
|
||||||
11 0.350000000000000 0.225000000000000 0.128300000000000 300 800 0 0
|
|
||||||
28 0.220000000000000 0.143000000000000 0.250000000000000 300 600 0 0
|
|
||||||
29 0.750000000000000 0.125000000000000 0.250000000000000 300 800 0 0
|
|
||||||
30 0.540000000000000 0.195000000000000 0.252000000000000 600 1600 0 0
|
|
||||||
31 0.380000000000000 0.220000000000000 0.439000000000000 200 400 0 0
|
|
||||||
32 0.360000000000000 0.125000000000000 0.635000000000000 200 500 0 0
|
|
||||||
33 0.900000000000000 0.130000000000000 0.0250000000000000 200 500 0 0
|
|
||||||
34 0.830000000000000 0.230000000000000 0.0730000000000000 100 300 0 0
|
|
||||||
35 0.440000000000000 0.143000000000000 0.312000000000000 320 600 0 0
|
|
||||||
36 0.120000000000000 0.140000000000000 0.665000000000000 400 800 0 0
|
|
||||||
38 0.540000000000000 0.115000000000000 0.102000000000000 600 1600 0 0
|
|
||||||
40 0.660000000000000 0.155000000000000 0.265000000000000 100 350 0 0
|
|
||||||
41 0.820000000000000 0.160000000000000 0.700000000000000 250 600 0 0
|
|
||||||
42 0.440000000000000 0.145000000000000 0.105000000000000 250 600 0 0
|
|
||||||
43 0.350000000000000 0.127000000000000 0.450000000000000 80 300 0 0
|
|
||||||
44 0.540000000000000 0.125000000000000 0.122000000000000 600 1600 0 0
|
|
||||||
45 0.380000000000000 0.200000000000000 0.139000000000000 500 900 0 0
|
|
||||||
46 0.360000000000000 0.125000000000000 0.235000000000000 400 800 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
824
IEEE3001PG.dat
824
IEEE3001PG.dat
|
|
@ -1,824 +0,0 @@
|
||||||
300 409 100 28 0.100000000000000 0 0 0
|
|
||||||
1.00000000000000e-05 4 0 0 0 0 0 0
|
|
||||||
1 38 0 0 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
1 269 291 0.000800000000000000 0.00348000000000000 0 0 0
|
|
||||||
2 226 271 0.0555800000000000 0.246660000000000 0 0 0
|
|
||||||
3 226 300 0.0555900000000000 0.246660000000000 0 0 0
|
|
||||||
4 227 225 0.0381100000000000 0.216480000000000 0 0 0
|
|
||||||
5 225 228 0.0537000000000000 0.0702600000000000 0 0 0
|
|
||||||
6 228 229 1.10680000000000 0.952780000000000 0 0 0
|
|
||||||
7 271 300 0.0558000000000000 0.246660000000000 0 0 0
|
|
||||||
8 300 144 0.0737800000000000 0.0635200000000000 0 0 0
|
|
||||||
9 144 270 0.0383200000000000 0.0289400000000000 0 0 0
|
|
||||||
10 227 68 0.235520000000000 0.990360000000000 0 0 0
|
|
||||||
11 146 147 0.00100000000000000 0.00600000000000000 0 0 0
|
|
||||||
12 230 71 0.00100000000000000 0.00900000000000000 0 0 0
|
|
||||||
13 230 148 0.00600000000000000 0.0270000000000000 0.0540000000000000 0 0
|
|
||||||
14 292 272 0 0.00300000000000000 0 0 0
|
|
||||||
15 292 150 0.00800000000000000 0.0690000000000000 0.139000000000000 0 0
|
|
||||||
16 292 104 0.00100000000000000 0.00700000000000000 0 0 0
|
|
||||||
17 70 149 0.00200000000000000 0.0190000000000000 1.12700000000000 0 0
|
|
||||||
18 147 72 0.00600000000000000 0.0290000000000000 0.0180000000000000 0 0
|
|
||||||
19 272 231 0.00100000000000000 0.00900000000000000 0.0700000000000000 0 0
|
|
||||||
20 272 98 0.00100000000000000 0.00700000000000000 0.0140000000000000 0 0
|
|
||||||
21 148 273 0.0130000000000000 0.0595000000000000 0.0330000000000000 0 0
|
|
||||||
22 148 75 0.0130000000000000 0.0420000000000000 0.0810000000000000 0 0
|
|
||||||
23 72 273 0.00600000000000000 0.0270000000000000 0.0130000000000000 0 0
|
|
||||||
24 273 74 0.00800000000000000 0.0340000000000000 0.0180000000000000 0 0
|
|
||||||
25 231 233 0.00200000000000000 0.0150000000000000 0.118000000000000 0 0
|
|
||||||
26 74 232 0.00600000000000000 0.0340000000000000 0.0160000000000000 0 0
|
|
||||||
27 75 286 0.0140000000000000 0.0420000000000000 0.0970000000000000 0 0
|
|
||||||
28 286 297 0.0650000000000000 0.248000000000000 0.121000000000000 0 0
|
|
||||||
29 286 165 0.0990000000000000 0.248000000000000 0.0350000000000000 0 0
|
|
||||||
30 286 166 0.0960000000000000 0.363000000000000 0.0480000000000000 0 0
|
|
||||||
31 149 274 0.00200000000000000 0.0220000000000000 1.28000000000000 0 0
|
|
||||||
32 150 233 0.00200000000000000 0.0180000000000000 0.0360000000000000 0 0
|
|
||||||
33 150 163 0.0130000000000000 0.0800000000000000 0.151000000000000 0 0
|
|
||||||
34 232 77 0.0160000000000000 0.0330000000000000 0.0150000000000000 0 0
|
|
||||||
35 232 79 0.0690000000000000 0.186000000000000 0.0980000000000000 0 0
|
|
||||||
36 233 235 0.00400000000000000 0.0340000000000000 0.280000000000000 0 0
|
|
||||||
37 77 234 0.0520000000000000 0.111000000000000 0.0500000000000000 0 0
|
|
||||||
38 234 78 0.0190000000000000 0.0390000000000000 0.0180000000000000 0 0
|
|
||||||
39 235 14 0.00700000000000000 0.0680000000000000 0.134000000000000 0 0
|
|
||||||
40 78 151 0.0360000000000000 0.0710000000000000 0.0340000000000000 0 0
|
|
||||||
41 151 79 0.0450000000000000 0.120000000000000 0.0650000000000000 0 0
|
|
||||||
42 151 15 0.0430000000000000 0.130000000000000 0.0140000000000000 0 0
|
|
||||||
43 236 80 0 0.0630000000000000 0 0 0
|
|
||||||
44 236 238 0.00250000000000000 0.0120000000000000 0.0130000000000000 0 0
|
|
||||||
45 236 152 0.00600000000000000 0.0290000000000000 0.0200000000000000 0 0
|
|
||||||
46 236 287 0.00700000000000000 0.0430000000000000 0.0260000000000000 0 0
|
|
||||||
47 80 274 0.00100000000000000 0.00800000000000000 0.0420000000000000 0 0
|
|
||||||
48 237 245 0.0120000000000000 0.0600000000000000 0.00800000000000000 0 0
|
|
||||||
49 237 161 0.00600000000000000 0.0140000000000000 0.00200000000000000 0 0
|
|
||||||
50 237 293 0.0100000000000000 0.0290000000000000 0.00300000000000000 0 0
|
|
||||||
51 81 164 0.00400000000000000 0.0270000000000000 0.0430000000000000 0 0
|
|
||||||
52 297 238 0.00800000000000000 0.0470000000000000 0.00800000000000000 0 0
|
|
||||||
53 297 152 0.0220000000000000 0.0640000000000000 0.00700000000000000 0 0
|
|
||||||
54 297 287 0.0100000000000000 0.0360000000000000 0.0200000000000000 0 0
|
|
||||||
55 297 241 0.0170000000000000 0.0810000000000000 0.0480000000000000 0 0
|
|
||||||
56 297 165 0.102000000000000 0.254000000000000 0.0330000000000000 0 0
|
|
||||||
57 297 166 0.0470000000000000 0.127000000000000 0.0160000000000000 0 0
|
|
||||||
58 238 287 0.00800000000000000 0.0370000000000000 0.0200000000000000 0 0
|
|
||||||
59 238 239 0.0320000000000000 0.0870000000000000 0.0400000000000000 0 0
|
|
||||||
60 82 274 0.000600000000000000 0.00640000000000000 0.404000000000000 0 0
|
|
||||||
61 152 155 0.0260000000000000 0.154000000000000 0.0220000000000000 0 0
|
|
||||||
62 287 274 0 0.0290000000000000 0 0 0
|
|
||||||
63 287 241 0.0650000000000000 0.191000000000000 0.0200000000000000 0 0
|
|
||||||
64 287 156 0.0310000000000000 0.0890000000000000 0.0360000000000000 0 0
|
|
||||||
65 274 153 0.00200000000000000 0.0140000000000000 0.806000000000000 0 0
|
|
||||||
66 239 275 0.0260000000000000 0.0720000000000000 0.0350000000000000 0 0
|
|
||||||
67 239 155 0.0950000000000000 0.262000000000000 0.0320000000000000 0 0
|
|
||||||
68 239 84 0.0130000000000000 0.0390000000000000 0.0160000000000000 0 0
|
|
||||||
69 275 154 0.0270000000000000 0.0840000000000000 0.0390000000000000 0 0
|
|
||||||
70 275 157 0.0280000000000000 0.0840000000000000 0.0370000000000000 0 0
|
|
||||||
71 240 87 0.00700000000000000 0.0410000000000000 0.312000000000000 0 0
|
|
||||||
72 240 246 0.00900000000000000 0.0540000000000000 0.411000000000000 0 0
|
|
||||||
73 153 248 0.00500000000000000 0.0420000000000000 0.690000000000000 0 0
|
|
||||||
74 154 277 0.0520000000000000 0.145000000000000 0.0730000000000000 0 0
|
|
||||||
75 154 94 0.0430000000000000 0.118000000000000 0.0130000000000000 0 0
|
|
||||||
76 155 173 0.0250000000000000 0.0620000000000000 0.00700000000000000 0 0
|
|
||||||
77 241 156 0.0310000000000000 0.0940000000000000 0.0430000000000000 0 0
|
|
||||||
78 156 83 0.0370000000000000 0.109000000000000 0.0490000000000000 0 0
|
|
||||||
79 83 242 0.0270000000000000 0.0800000000000000 0.0360000000000000 0 0
|
|
||||||
80 84 157 0.0250000000000000 0.0730000000000000 0.0350000000000000 0 0
|
|
||||||
81 157 242 0.0350000000000000 0.103000000000000 0.0470000000000000 0 0
|
|
||||||
82 242 243 0.0650000000000000 0.169000000000000 0.0820000000000000 0 0
|
|
||||||
83 243 85 0.0460000000000000 0.0800000000000000 0.0360000000000000 0 0
|
|
||||||
84 243 159 0.159000000000000 0.537000000000000 0.0710000000000000 0 0
|
|
||||||
85 85 86 0.00900000000000000 0.0260000000000000 0.00500000000000000 0 0
|
|
||||||
86 86 158 0.00200000000000000 0.0130000000000000 0.0150000000000000 0 0
|
|
||||||
87 87 276 0.00900000000000000 0.0650000000000000 0.485000000000000 0 0
|
|
||||||
88 276 88 0.0160000000000000 0.105000000000000 0.203000000000000 0 0
|
|
||||||
89 276 101 0.00100000000000000 0.00700000000000000 0.0130000000000000 0 0
|
|
||||||
90 159 19 0.0265000000000000 0.172000000000000 0.0260000000000000 0 0
|
|
||||||
91 160 298 0.0510000000000000 0.232000000000000 0.0280000000000000 0 0
|
|
||||||
92 160 247 0.0510000000000000 0.157000000000000 0.0230000000000000 0 0
|
|
||||||
93 89 244 0.0320000000000000 0.100000000000000 0.0620000000000000 0 0
|
|
||||||
94 89 20 0.0200000000000000 0.123400000000000 0.0280000000000000 0 0
|
|
||||||
95 244 245 0.0360000000000000 0.131000000000000 0.0680000000000000 0 0
|
|
||||||
96 244 277 0.0340000000000000 0.0990000000000000 0.0470000000000000 0 0
|
|
||||||
97 245 293 0.0180000000000000 0.0870000000000000 0.0110000000000000 0 0
|
|
||||||
98 245 21 0.0256000000000000 0.193000000000000 0 0 0
|
|
||||||
99 277 161 0.0210000000000000 0.0570000000000000 0.0300000000000000 0 0
|
|
||||||
100 277 247 0.0180000000000000 0.0520000000000000 0.0180000000000000 0 0
|
|
||||||
101 246 164 0.00400000000000000 0.0270000000000000 0.0500000000000000 0 0
|
|
||||||
102 246 23 0.0286000000000000 0.201300000000000 0.379000000000000 0 0
|
|
||||||
103 161 293 0.0160000000000000 0.0430000000000000 0.00400000000000000 0 0
|
|
||||||
104 293 162 0.00100000000000000 0.00600000000000000 0.00700000000000000 0 0
|
|
||||||
105 293 90 0.0140000000000000 0.0700000000000000 0.0380000000000000 0 0
|
|
||||||
106 293 22 0.0891000000000000 0.267600000000000 0.0290000000000000 0 0
|
|
||||||
107 293 24 0.0782000000000000 0.212700000000000 0.0220000000000000 0 0
|
|
||||||
108 162 247 0.00600000000000000 0.0220000000000000 0.0110000000000000 0 0
|
|
||||||
109 162 1 0 0.0360000000000000 0 0 0
|
|
||||||
110 247 298 0.0990000000000000 0.375000000000000 0.0510000000000000 0 0
|
|
||||||
111 90 298 0.0220000000000000 0.107000000000000 0.0580000000000000 0 0
|
|
||||||
112 248 205 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
|
||||||
113 248 206 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
|
||||||
114 91 249 0.00800000000000000 0.0640000000000000 0.128000000000000 0 0
|
|
||||||
115 249 163 0.0120000000000000 0.0930000000000000 0.183000000000000 0 0
|
|
||||||
116 249 17 0.00600000000000000 0.0480000000000000 0.0920000000000000 0 0
|
|
||||||
117 165 167 0.0470000000000000 0.119000000000000 0.0140000000000000 0 0
|
|
||||||
118 166 168 0.0320000000000000 0.174000000000000 0.0240000000000000 0 0
|
|
||||||
119 167 169 0.100000000000000 0.253000000000000 0.0310000000000000 0 0
|
|
||||||
120 167 278 0.0220000000000000 0.0770000000000000 0.0390000000000000 0 0
|
|
||||||
121 168 171 0.0190000000000000 0.144000000000000 0.0170000000000000 0 0
|
|
||||||
122 168 250 0.0170000000000000 0.0920000000000000 0.0120000000000000 0 0
|
|
||||||
123 169 278 0.278000000000000 0.427000000000000 0.0430000000000000 0 0
|
|
||||||
124 278 170 0.0220000000000000 0.0530000000000000 0.00700000000000000 0 0
|
|
||||||
125 278 280 0.0380000000000000 0.0920000000000000 0.0120000000000000 0 0
|
|
||||||
126 278 171 0.0480000000000000 0.122000000000000 0.0150000000000000 0 0
|
|
||||||
127 92 170 0.0240000000000000 0.0640000000000000 0.00700000000000000 0 0
|
|
||||||
128 92 280 0.0340000000000000 0.121000000000000 0.0150000000000000 0 0
|
|
||||||
129 279 173 0.0530000000000000 0.135000000000000 0.0170000000000000 0 0
|
|
||||||
130 279 174 0.00200000000000000 0.00400000000000000 0.00200000000000000 0 0
|
|
||||||
131 279 251 0.0450000000000000 0.354000000000000 0.0440000000000000 0 0
|
|
||||||
132 279 252 0.0500000000000000 0.174000000000000 0.0220000000000000 0 0
|
|
||||||
133 170 280 0.0160000000000000 0.0380000000000000 0.00400000000000000 0 0
|
|
||||||
134 280 172 0.0430000000000000 0.0640000000000000 0.0270000000000000 0 0
|
|
||||||
135 171 250 0.0190000000000000 0.0620000000000000 0.00800000000000000 0 0
|
|
||||||
136 172 174 0.0760000000000000 0.130000000000000 0.0440000000000000 0 0
|
|
||||||
137 172 16 0.0440000000000000 0.124000000000000 0.0150000000000000 0 0
|
|
||||||
138 250 173 0.0120000000000000 0.0880000000000000 0.0110000000000000 0 0
|
|
||||||
139 250 252 0.157000000000000 0.400000000000000 0.0470000000000000 0 0
|
|
||||||
140 174 18 0.0740000000000000 0.208000000000000 0.0260000000000000 0 0
|
|
||||||
141 251 252 0.0700000000000000 0.184000000000000 0.0210000000000000 0 0
|
|
||||||
142 251 94 0.100000000000000 0.274000000000000 0.0310000000000000 0 0
|
|
||||||
143 251 175 0.109000000000000 0.393000000000000 0.0360000000000000 0 0
|
|
||||||
144 252 93 0.142000000000000 0.404000000000000 0.0500000000000000 0 0
|
|
||||||
145 93 175 0.0170000000000000 0.0420000000000000 0.00600000000000000 0 0
|
|
||||||
146 95 256 0.00360000000000000 0.0199000000000000 0.00400000000000000 0 0
|
|
||||||
147 96 255 0.00200000000000000 0.104900000000000 0.00100000000000000 0 0
|
|
||||||
148 97 253 0.000100000000000000 0.00180000000000000 0.0170000000000000 0 0
|
|
||||||
149 253 254 0 0.0271000000000000 0 0 0
|
|
||||||
150 253 142 0 0.616300000000000 0 0 0
|
|
||||||
151 142 255 0 -0.369700000000000 0 0 0
|
|
||||||
152 253 176 0.00220000000000000 0.291500000000000 0 0 0
|
|
||||||
153 254 255 0 0.0339000000000000 0 0 0
|
|
||||||
154 254 176 0 0.0582000000000000 0 0 0
|
|
||||||
155 256 177 0.0808000000000000 0.234400000000000 0.0290000000000000 0 0
|
|
||||||
156 256 179 0.0965000000000000 0.366900000000000 0.0540000000000000 0 0
|
|
||||||
157 177 178 0.0360000000000000 0.107600000000000 0.117000000000000 0 0
|
|
||||||
158 177 179 0.0476000000000000 0.141400000000000 0.149000000000000 0 0
|
|
||||||
159 179 294 0.000600000000000000 0.0197000000000000 0 0 0
|
|
||||||
160 294 257 0.00590000000000000 0.0405000000000000 0.250000000000000 0 0
|
|
||||||
161 294 181 0.0115000000000000 0.110600000000000 0.185000000000000 0 0
|
|
||||||
162 294 182 0.0198000000000000 0.168800000000000 0.321000000000000 0 0
|
|
||||||
163 294 191 0.00500000000000000 0.0500000000000000 0.330000000000000 0 0
|
|
||||||
164 294 192 0.00770000000000000 0.0538000000000000 0.335000000000000 0 0
|
|
||||||
165 294 196 0.0165000000000000 0.115700000000000 0.171000000000000 0 0
|
|
||||||
166 257 180 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
|
||||||
167 257 183 0.00490000000000000 0.0336000000000000 0.208000000000000 0 0
|
|
||||||
168 257 195 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
|
||||||
169 180 299 0.00780000000000000 0.0773000000000000 0.126000000000000 0 0
|
|
||||||
170 180 288 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
|
||||||
171 181 299 0.00760000000000000 0.0752000000000000 0.122000000000000 0 0
|
|
||||||
172 181 288 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
|
||||||
173 299 182 0.00160000000000000 0.0164000000000000 0.0260000000000000 0 0
|
|
||||||
174 299 105 0.00170000000000000 0.0165000000000000 0.0260000000000000 0 0
|
|
||||||
175 299 115 0.00790000000000000 0.0793000000000000 0.127000000000000 0 0
|
|
||||||
176 299 195 0.00780000000000000 0.0784000000000000 0.125000000000000 0 0
|
|
||||||
177 288 295 0.00170000000000000 0.0117000000000000 0.289000000000000 0 0
|
|
||||||
178 288 195 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
|
||||||
179 288 196 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
|
||||||
180 288 2 0.000200000000000000 0.0101000000000000 0 0 0
|
|
||||||
181 183 99 0.00430000000000000 0.0293000000000000 0.180000000000000 0 0
|
|
||||||
182 183 121 0.00390000000000000 0.0381000000000000 0.258000000000000 0 0
|
|
||||||
183 99 184 0.00910000000000000 0.0623000000000000 0.385000000000000 0 0
|
|
||||||
184 184 295 0.0125000000000000 0.0890000000000000 0.540000000000000 0 0
|
|
||||||
185 184 106 0.00560000000000000 0.0390000000000000 0.953000000000000 0 0
|
|
||||||
186 295 296 0.00150000000000000 0.0114000000000000 0.284000000000000 0 0
|
|
||||||
187 295 201 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
|
||||||
188 295 122 0.000700000000000000 0.0151000000000000 0.126000000000000 0 0
|
|
||||||
189 295 262 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
|
||||||
190 185 197 0.0562000000000000 0.224800000000000 0.0810000000000000 0 0
|
|
||||||
191 296 186 0.0120000000000000 0.0836000000000000 0.123000000000000 0 0
|
|
||||||
192 296 187 0.0152000000000000 0.113200000000000 0.684000000000000 0 0
|
|
||||||
193 296 282 0.0468000000000000 0.336900000000000 0.519000000000000 0 0
|
|
||||||
194 296 258 0.0430000000000000 0.303100000000000 0.463000000000000 0 0
|
|
||||||
195 296 102 0.0489000000000000 0.349200000000000 0.538000000000000 0 0
|
|
||||||
196 296 119 0.00130000000000000 0.00890000000000000 0.119000000000000 0 0
|
|
||||||
197 186 258 0.0291000000000000 0.226700000000000 0.342000000000000 0 0
|
|
||||||
198 187 281 0.00600000000000000 0.0570000000000000 0.767000000000000 0 0
|
|
||||||
199 281 282 0.00750000000000000 0.0773000000000000 0.119000000000000 0 0
|
|
||||||
200 281 103 0.0127000000000000 0.0909000000000000 0.135000000000000 0 0
|
|
||||||
201 282 258 0.00850000000000000 0.0588000000000000 0.0870000000000000 0 0
|
|
||||||
202 282 103 0.0218000000000000 0.151100000000000 0.223000000000000 0 0
|
|
||||||
203 258 102 0.00730000000000000 0.0504000000000000 0.0740000000000000 0 0
|
|
||||||
204 188 261 0.0523000000000000 0.152600000000000 0.0740000000000000 0 0
|
|
||||||
205 188 200 0.137100000000000 0.391900000000000 0.0760000000000000 0 0
|
|
||||||
206 106 189 0.0137000000000000 0.0957000000000000 0.141000000000000 0 0
|
|
||||||
207 189 110 0.00550000000000000 0.0288000000000000 0.190000000000000 0 0
|
|
||||||
208 107 108 0.174600000000000 0.316100000000000 0.0400000000000000 0 0
|
|
||||||
209 107 120 0.0804000000000000 0.305400000000000 0.0450000000000000 0 0
|
|
||||||
210 190 110 0.0110000000000000 0.0568000000000000 0.388000000000000 0 0
|
|
||||||
211 191 193 0.000800000000000000 0.00980000000000000 0.0690000000000000 0 0
|
|
||||||
212 192 193 0.00290000000000000 0.0285000000000000 0.190000000000000 0 0
|
|
||||||
213 192 109 0.00660000000000000 0.0448000000000000 0.277000000000000 0 0
|
|
||||||
214 111 194 0.00240000000000000 0.0326000000000000 0.236000000000000 0 0
|
|
||||||
215 111 113 0.00180000000000000 0.0245000000000000 1.66200000000000 0 0
|
|
||||||
216 112 194 0.00440000000000000 0.0514000000000000 3.59700000000000 0 0
|
|
||||||
217 113 114 0.000200000000000000 0.0123000000000000 0 0 0
|
|
||||||
218 115 196 0.00180000000000000 0.0178000000000000 0.0290000000000000 0 0
|
|
||||||
219 197 259 0.0669000000000000 0.484300000000000 0.0630000000000000 0 0
|
|
||||||
220 197 198 0.0558000000000000 0.221000000000000 0.0310000000000000 0 0
|
|
||||||
221 259 198 0.0807000000000000 0.333100000000000 0.0490000000000000 0 0
|
|
||||||
222 259 260 0.0739000000000000 0.307100000000000 0.0430000000000000 0 0
|
|
||||||
223 259 199 0.179900000000000 0.501700000000000 0.0690000000000000 0 0
|
|
||||||
224 260 199 0.0904000000000000 0.362600000000000 0.0480000000000000 0 0
|
|
||||||
225 260 200 0.0770000000000000 0.309200000000000 0.0540000000000000 0 0
|
|
||||||
226 199 117 0.0251000000000000 0.0829000000000000 0.0470000000000000 0 0
|
|
||||||
227 117 261 0.0222000000000000 0.0847000000000000 0.0500000000000000 0 0
|
|
||||||
228 261 200 0.0498000000000000 0.185500000000000 0.0290000000000000 0 0
|
|
||||||
229 261 118 0.00610000000000000 0.0290000000000000 0.0840000000000000 0 0
|
|
||||||
230 201 100 0.000400000000000000 0.0202000000000000 0 0 0
|
|
||||||
231 201 123 0.000400000000000000 0.00830000000000000 0.115000000000000 0 0
|
|
||||||
232 121 3 0.00250000000000000 0.0245000000000000 0.164000000000000 0 0
|
|
||||||
233 122 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
|
||||||
234 123 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
|
||||||
235 262 100 0.000400000000000000 0.0202000000000000 0 0 0
|
|
||||||
236 202 212 0.0330000000000000 0.0950000000000000 0 0 0
|
|
||||||
237 202 131 0.0460000000000000 0.0690000000000000 0 0 0
|
|
||||||
238 203 290 0.000400000000000000 0.00220000000000000 6.20000000000000 0 0
|
|
||||||
239 203 138 0 0.0275000000000000 0 0 0
|
|
||||||
240 124 125 0.00300000000000000 0.0480000000000000 0 0 0
|
|
||||||
241 125 218 0.00200000000000000 0.00900000000000000 0 0 0
|
|
||||||
242 204 210 0.0450000000000000 0.0630000000000000 0 0 0
|
|
||||||
243 204 212 0.0480000000000000 0.127000000000000 0 0 0
|
|
||||||
244 205 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
|
||||||
245 205 25 0.00240000000000000 0.0355000000000000 0.360000000000000 0 0
|
|
||||||
246 206 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
|
||||||
247 263 207 0.0140000000000000 0.0400000000000000 0.00400000000000000 0 0
|
|
||||||
248 263 283 0.0300000000000000 0.0810000000000000 0.0100000000000000 0 0
|
|
||||||
249 207 289 0.0100000000000000 0.0600000000000000 0.00900000000000000 0 0
|
|
||||||
250 207 298 0.0150000000000000 0.0400000000000000 0.00600000000000000 0 0
|
|
||||||
251 289 128 0.332000000000000 0.688000000000000 0 0 0
|
|
||||||
252 289 129 0.00900000000000000 0.0460000000000000 0.0250000000000000 0 0
|
|
||||||
253 289 283 0.0200000000000000 0.0730000000000000 0.00800000000000000 0 0
|
|
||||||
254 289 298 0.0340000000000000 0.109000000000000 0.0320000000000000 0 0
|
|
||||||
255 126 208 0.0760000000000000 0.135000000000000 0.00900000000000000 0 0
|
|
||||||
256 126 283 0.0400000000000000 0.102000000000000 0.00500000000000000 0 0
|
|
||||||
257 208 283 0.0810000000000000 0.128000000000000 0.0140000000000000 0 0
|
|
||||||
258 127 209 0.124000000000000 0.183000000000000 0 0 0
|
|
||||||
259 129 298 0.0100000000000000 0.0590000000000000 0.00800000000000000 0 0
|
|
||||||
260 209 210 0.0460000000000000 0.0680000000000000 0 0 0
|
|
||||||
261 210 211 0.302000000000000 0.446000000000000 0 0 0
|
|
||||||
262 211 130 0.0730000000000000 0.0930000000000000 0 0 0
|
|
||||||
263 211 212 0.240000000000000 0.421000000000000 0 0 0
|
|
||||||
264 213 215 0.0139000000000000 0.0778000000000000 0.0860000000000000 0 0
|
|
||||||
265 214 215 0.00170000000000000 0.0185000000000000 0.0200000000000000 0 0
|
|
||||||
266 214 222 0.00150000000000000 0.0108000000000000 0.00200000000000000 0 0
|
|
||||||
267 215 132 0.00450000000000000 0.0249000000000000 0.0260000000000000 0 0
|
|
||||||
268 132 264 0.00400000000000000 0.0497000000000000 0.0180000000000000 0 0
|
|
||||||
269 264 216 0 0.0456000000000000 0 0 0
|
|
||||||
270 264 284 0.000500000000000000 0.0177000000000000 0.0200000000000000 0 0
|
|
||||||
271 264 265 0.00270000000000000 0.0395000000000000 0.832000000000000 0 0
|
|
||||||
272 284 285 0.000300000000000000 0.00180000000000000 5.20000000000000 0 0
|
|
||||||
273 265 216 0.00370000000000000 0.0484000000000000 0.430000000000000 0 0
|
|
||||||
274 265 133 0.00100000000000000 0.0295000000000000 0.503000000000000 0 0
|
|
||||||
275 265 221 0.00160000000000000 0.00460000000000000 0.402000000000000 0 0
|
|
||||||
276 133 134 0.000300000000000000 0.00130000000000000 1 0 0
|
|
||||||
277 217 218 0.0100000000000000 0.0640000000000000 0.480000000000000 0 0
|
|
||||||
278 217 135 0.00190000000000000 0.00810000000000000 0.860000000000000 0 0
|
|
||||||
279 218 124 0.00100000000000000 0.0610000000000000 0 0 0
|
|
||||||
280 135 290 0.000500000000000000 0.0212000000000000 0 0 0
|
|
||||||
281 219 220 0.00190000000000000 0.00870000000000000 1.28000000000000 0 0
|
|
||||||
282 219 290 0.00260000000000000 0.0917000000000000 0 0 0
|
|
||||||
283 219 266 0.00130000000000000 0.0288000000000000 0.810000000000000 0 0
|
|
||||||
284 220 203 0 0.0626000000000000 0 0 0
|
|
||||||
285 290 136 0.000200000000000000 0.00690000000000000 1.36400000000000 0 0
|
|
||||||
286 290 285 0.000100000000000000 0.000600000000000000 3.57000000000000 0 0
|
|
||||||
287 136 8 0.00170000000000000 0.0485000000000000 0 0 0
|
|
||||||
288 266 137 0.000200000000000000 0.0259000000000000 0.144000000000000 0 0
|
|
||||||
289 266 285 0.000600000000000000 0.0272000000000000 0 0 0
|
|
||||||
290 137 221 0.000200000000000000 0.000600000000000000 0.800000000000000 0 0
|
|
||||||
291 138 13 0.000300000000000000 0.00430000000000000 0.00900000000000000 0 0
|
|
||||||
292 222 267 0.00820000000000000 0.0851000000000000 0 0 0
|
|
||||||
293 222 268 0.0112000000000000 0.0723000000000000 0 0 0
|
|
||||||
294 139 140 0.0127000000000000 0.0355000000000000 0 0 0
|
|
||||||
295 139 267 0.0326000000000000 0.180400000000000 0 0 0
|
|
||||||
296 140 223 0.0195000000000000 0.0551000000000000 0 0 0
|
|
||||||
297 267 223 0.0157000000000000 0.0732000000000000 0 0 0
|
|
||||||
298 267 268 0.0360000000000000 0.211900000000000 0 0 0
|
|
||||||
299 223 268 0.0268000000000000 0.128500000000000 0 0 0
|
|
||||||
300 268 224 0.0428000000000000 0.121500000000000 0 0 0
|
|
||||||
301 224 141 0.0351000000000000 0.100400000000000 0 0 0
|
|
||||||
302 141 12 0.0616000000000000 0.185700000000000 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
97 3.25000000000000 0 0 0 0 0 0
|
|
||||||
255 0.550000000000000 0 0 0 0 0 0
|
|
||||||
107 0.345000000000000 0 0 0 0 0 0
|
|
||||||
194 -2.12000000000000 0 0 0 0 0 0
|
|
||||||
114 -1.03000000000000 0 0 0 0 0 0
|
|
||||||
259 0.530000000000000 0 0 0 0 0 0
|
|
||||||
200 0.450000000000000 0 0 0 0 0 0
|
|
||||||
203 -1.50000000000000 0 0 0 0 0 0
|
|
||||||
290 -3 0 0 0 0 0 0
|
|
||||||
221 -1.50000000000000 0 0 0 0 0 0
|
|
||||||
138 -1.40000000000000 0 0 0 0 0 0
|
|
||||||
224 0.456000000000000 0 0 0 0 0 0
|
|
||||||
300 0.0240000000000000 0 0 0 0 0 0
|
|
||||||
54 0.0170000000000000 0 0 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
1 297 269 0.000100000000000000 0.000500000000000000 1.00820000000000 0.904300000000000 1.10430000000000
|
|
||||||
2 269 226 0.0244000000000000 0.436800000000000 0.966800000000000 0.939100000000000 1.14780000000000
|
|
||||||
3 269 227 0.0362000000000000 0.649000000000000 0.979600000000000 0.939100000000000 1.14780000000000
|
|
||||||
4 291 62 0.0158000000000000 0.374900000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
|
||||||
5 291 63 0.0158000000000000 0.374900000000000 0.939100000000000 0.939100000000000 1.14780000000000
|
|
||||||
6 291 145 0.0160000000000000 0.380500000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
|
||||||
7 291 64 0 0.152000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
|
||||||
8 291 65 0 0.800000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
|
||||||
9 228 47 0.443600000000000 2.81520000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
10 225 48 0.507500000000000 3.22020000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
11 229 49 0.666900000000000 3.94400000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
12 229 50 0.611300000000000 3.61520000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
13 271 66 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
14 271 67 0.307900000000000 2.05700000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
15 300 51 0.736300000000000 4.67240000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
16 300 52 0.769800000000000 4.88460000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
17 300 53 0.757300000000000 4.80560000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
18 270 59 0.366100000000000 2.45600000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
19 270 60 1.05930000000000 5.45360000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
20 270 61 0.156700000000000 1.69940000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
21 300 54 0.130100000000000 1.39120000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
22 300 55 0.544800000000000 3.45720000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
23 300 56 0.154300000000000 1.67290000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
24 300 57 0.384900000000000 2.57120000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
25 300 58 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
26 145 69 0 0.750000000000000 0.958300000000000 0.939100000000000 1.10000000000000
|
|
||||||
27 4 214 0.00250000000000000 0.0380000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
28 5 285 0.00140000000000000 0.0514000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
29 6 290 0.000900000000000000 0.0472000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
30 11 285 0.000500000000000000 0.0154000000000000 1 0.939100000000000 1.10000000000000
|
|
||||||
31 292 146 0 0.0520000000000000 0.947000000000000 0.900000000000000 1.10000000000000
|
|
||||||
32 292 230 0 0.0520000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
|
||||||
33 292 70 0 0.00500000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
|
||||||
34 272 147 0 0.0390000000000000 0.948000000000000 0.900000000000000 1.10000000000000
|
|
||||||
35 272 71 0 0.0390000000000000 0.959000000000000 0.900000000000000 1.10000000000000
|
|
||||||
36 73 273 0 0.0890000000000000 1.04600000000000 0.900000000000000 1.10000000000000
|
|
||||||
37 231 73 0 0.0530000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
|
||||||
38 286 76 0.0194000000000000 0.0311000000000000 0.956100000000000 0.900000000000000 1.10000000000000
|
|
||||||
39 149 286 0.00100000000000000 0.0380000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
|
||||||
40 233 232 0 0.0140000000000000 0.952000000000000 0.900000000000000 1.10000000000000
|
|
||||||
41 235 234 0 0.0640000000000000 0.943000000000000 0.900000000000000 1.10000000000000
|
|
||||||
42 81 237 0 0.0470000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
|
||||||
43 240 275 0 0.0200000000000000 1.00800000000000 0.900000000000000 1.10000000000000
|
|
||||||
44 240 153 0 0.0210000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
45 276 158 0 0.0590000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
|
||||||
46 159 88 0 0.0380000000000000 1.01700000000000 0.900000000000000 1.10000000000000
|
|
||||||
47 277 246 0 0.0244000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
48 248 164 0 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
49 91 279 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
50 249 280 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
51 163 169 0 0.0460000000000000 1.01500000000000 0.900000000000000 1.10000000000000
|
|
||||||
52 175 130 0 0.149000000000000 0.967000000000000 0.900000000000000 1.10000000000000
|
|
||||||
53 96 178 0.00520000000000000 0.0174000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
|
||||||
54 176 95 0 0.0280000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
55 256 191 0.000500000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
56 299 98 0 0.0180000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
|
||||||
57 299 104 0 0.0140000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
|
||||||
58 182 116 0.00100000000000000 0.0402000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
59 186 198 0.00240000000000000 0.0603000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
|
||||||
60 187 260 0.00240000000000000 0.0498000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
61 281 101 0 0.0833000000000000 1.03500000000000 0.900000000000000 1.10000000000000
|
|
||||||
62 281 188 0.00130000000000000 0.0371000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
|
||||||
63 282 118 0.000500000000000000 0.0182000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
64 105 116 0.00100000000000000 0.0392000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
65 189 120 0.00270000000000000 0.0639000000000000 1.07300000000000 0.900000000000000 1.10000000000000
|
|
||||||
66 190 108 0.000800000000000000 0.0256000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
67 193 97 0 0.0160000000000000 1.05060000000000 0.900000000000000 1.10000000000000
|
|
||||||
68 109 178 0.00120000000000000 0.0396000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
|
||||||
69 112 295 0.00130000000000000 0.0384000000000000 0.980000000000000 0.900000000000000 1.10000000000000
|
|
||||||
70 194 190 0.000900000000000000 0.0231000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
|
||||||
71 119 185 0.000300000000000000 0.0131000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
72 202 283 0 0.252000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
73 204 263 0 0.237000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
74 206 213 0.000800000000000000 0.0366000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
|
||||||
75 208 224 0 0.220000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
76 127 160 0 0.0980000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
77 128 298 0 0.128000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
|
||||||
78 209 143 0.0200000000000000 0.204000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
|
||||||
79 131 289 0.0260000000000000 0.211000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
|
||||||
80 298 213 0.00300000000000000 0.0122000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
81 216 284 0.00300000000000000 0.0122000000000000 0.970000000000000 0.900000000000000 1.10000000000000
|
|
||||||
82 134 217 0.00120000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
83 220 7 0.00100000000000000 0.0332000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
|
||||||
84 266 9 0.000500000000000000 0.0160000000000000 1.07000000000000 0.900000000000000 1.10000000000000
|
|
||||||
85 221 10 0.000500000000000000 0.0160000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
|
||||||
86 263 143 0.000100000000000000 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
87 254 26 0.00100000000000000 0.0230000000000000 1.02230000000000 0.900000000000000 1.10000000000000
|
|
||||||
88 255 27 0 0.0230000000000000 0.928400000000000 0.900000000000000 1.10000000000000
|
|
||||||
89 29 230 0.00100000000000000 0.0146000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
90 30 292 0 0.0105000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
91 41 158 0 0.0238000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
92 42 276 0 0.0321000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
|
||||||
93 46 114 0 0.0154000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
94 35 235 0 0.0289000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
95 28 146 0 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
96 44 299 0 0.0193000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
97 31 273 0 0.0192000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
98 34 234 0 0.0230000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
99 38 241 0 0.0124000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
100 45 185 0 0.0167000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
101 32 231 0 0.0312000000000000 1 0.900000000000000 1.10000000000000
|
|
||||||
102 33 76 0 0.0165000000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
|
||||||
103 36 82 0 0.0316000000000000 0.965000000000000 0.900000000000000 1.10000000000000
|
|
||||||
104 40 243 0 0.0535000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
|
||||||
105 37 275 0 0.181800000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
|
||||||
106 39 242 0 0.196100000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
|
||||||
107 43 244 0 0.0690000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
1 375 0 37 13 0 0 0
|
|
||||||
2 0 0 763.6 291.1 0 0 0
|
|
||||||
3 200 0 0 0 0 0 0
|
|
||||||
4 471.8339454 0 0 0 0 0 0
|
|
||||||
5 599.9999916 0 328 188 0 0 0
|
|
||||||
6 303 0 538 369 0 0 0
|
|
||||||
7 345 0 0 0 0 0 0
|
|
||||||
8 300 0 404 212 0 0 0
|
|
||||||
9 799.9999966 0 0 0 0 0 0
|
|
||||||
10 550 0 0 0 0 0 0
|
|
||||||
11 664.3132491 0 0 0 0 0 0
|
|
||||||
12 0 0 -23 -17 0 0 0
|
|
||||||
13 0 0 -33.1 -29.4 0 0 0
|
|
||||||
14 0 0 115.8 -24 0 0 0
|
|
||||||
15 0 0 2.4 -12.6 0 0 0
|
|
||||||
16 0 0 2.4 -3.9 0 0 0
|
|
||||||
17 0 0 -14.9 26.5 0 0 0
|
|
||||||
18 0 0 24.7 -1.2 0 0 0
|
|
||||||
19 0 0 145.3 -34.9 0 0 0
|
|
||||||
20 0 0 28.1 -20.5 0 0 0
|
|
||||||
21 0 0 14 2.5 0 0 0
|
|
||||||
22 0 0 -11.1 -1.4 0 0 0
|
|
||||||
23 0 0 50.5 17.4 0 0 0
|
|
||||||
24 0 0 29.6 0.6 0 0 0
|
|
||||||
25 0 0 -113.7 76.7 0 0 0
|
|
||||||
26 0 0 100.31 29.17 0 0 0
|
|
||||||
27 0 0 -100 34.17 0 0 0
|
|
||||||
28 395.8896056 0 0 0 0 0 0
|
|
||||||
29 395.6602564 0 0 0 0 0 0
|
|
||||||
30 600.0000006 0 0 0 0 0 0
|
|
||||||
31 220.1833677 0 0 0 0 0 0
|
|
||||||
32 200.0000012 0 0 0 0 0 0
|
|
||||||
33 499.9999996 0 0 0 0 0 0
|
|
||||||
34 299.9999995 0 0 0 0 0 0
|
|
||||||
35 320.0000205 0 0 0 0 0 0
|
|
||||||
36 400.0000002 0 0 0 0 0 0
|
|
||||||
37 37 0 0 0 0 0 0
|
|
||||||
38 798.6100734 0 0 0 0 0 0
|
|
||||||
39 45 0 0 0 0 0 0
|
|
||||||
40 313.2858398 0 0 0 0 0 0
|
|
||||||
41 250.0000004 0 0 0 0 0 0
|
|
||||||
42 599.9999989 0 0 0 0 0 0
|
|
||||||
43 212.8594084 0 0 0 0 0 0
|
|
||||||
44 824.4170571 0 0 0 0 0 0
|
|
||||||
45 704.4236744 0 0 0 0 0 0
|
|
||||||
46 584.1742333 0 0 0 0 0 0
|
|
||||||
47 0 0 1.53 0.53 0 0 0
|
|
||||||
48 0 0 1.35 0.47 0 0 0
|
|
||||||
49 0 0 0.45 0.16 0 0 0
|
|
||||||
50 0 0 0.45 0.16 0 0 0
|
|
||||||
51 0 0 1.84 0.64 0 0 0
|
|
||||||
52 0 0 1.39 0.48 0 0 0
|
|
||||||
53 0 0 1.89 0.65 0 0 0
|
|
||||||
54 0 0 1.55 0.54 0 0 0
|
|
||||||
55 0 0 1.66 0.58 0 0 0
|
|
||||||
56 0 0 3.03 1 0 0 0
|
|
||||||
57 0 0 1.86 0.64 0 0 0
|
|
||||||
58 0 0 2.58 0.89 0 0 0
|
|
||||||
59 0 0 1.01 0.35 0 0 0
|
|
||||||
60 0 0 0.81 0.28 0 0 0
|
|
||||||
61 0 0 1.6 0.52 0 0 0
|
|
||||||
62 -35.81 0 0 0 0 0 0
|
|
||||||
63 0 0 30 23 0 0 0
|
|
||||||
64 50 0 0 0 0 0 0
|
|
||||||
65 8 0 0 0 0 0 0
|
|
||||||
66 0 0 1.02 0.35 0 0 0
|
|
||||||
67 0 0 1.02 0.35 0 0 0
|
|
||||||
68 0 0 3.8 1.25 0 0 0
|
|
||||||
69 0 0 1.19 0.41 0 0 0
|
|
||||||
70 0 0 0 0 0 0 0
|
|
||||||
71 0 0 120 41 0 0 0
|
|
||||||
72 0 0 96 43 0 0 0
|
|
||||||
73 -5 0 148 33 0 0 0
|
|
||||||
74 0 0 58 10 0 0 0
|
|
||||||
75 0 0 160 60 0 0 0
|
|
||||||
76 0 0 561 220 0 0 0
|
|
||||||
77 0 0 81 23 0 0 0
|
|
||||||
78 0 0 45 12 0 0 0
|
|
||||||
79 0 0 69 13 0 0 0
|
|
||||||
80 0 0 0 0 0 0 0
|
|
||||||
81 0 0 0 0 0 0 0
|
|
||||||
82 0 0 0 0 0 0 0
|
|
||||||
83 0 0 61 28 0 0 0
|
|
||||||
84 0 0 69 3 0 0 0
|
|
||||||
85 0 0 14 1 0 0 0
|
|
||||||
86 0 0 218 106 0 0 0
|
|
||||||
87 0 0 0 0 0 0 0
|
|
||||||
88 0 0 0 0 0 0 0
|
|
||||||
89 0 0 56 20 0 0 0
|
|
||||||
90 0 0 28 7 0 0 0
|
|
||||||
91 0 0 0 0 0 0 0
|
|
||||||
92 68 0 66.7 0 0 0 0
|
|
||||||
93 0 0 19.6 0 0 0 0
|
|
||||||
94 0 0 26.2 0 0 0 0
|
|
||||||
95 0 0 0 0 0 0 0
|
|
||||||
96 0 0 0 0 0 0 0
|
|
||||||
97 0 0 0 0 0 0 0
|
|
||||||
98 0 0 0 0 0 0 0
|
|
||||||
99 0 0 169.2 41.6 0 0 0
|
|
||||||
100 -192.5 0 826.7 135.2 0 0 0
|
|
||||||
101 0 0 0 0 0 0 0
|
|
||||||
102 217 0 0 0 0 0 0
|
|
||||||
103 103 0 0 0 0 0 0
|
|
||||||
104 0 0 0 0 0 0 0
|
|
||||||
105 0 0 0 0 0 0 0
|
|
||||||
106 372 0 17 9 0 0 0
|
|
||||||
107 0 0 70 5 0 0 0
|
|
||||||
108 0 0 75 50 0 0 0
|
|
||||||
109 0 0 0 0 0 0 0
|
|
||||||
110 0 0 35 15 0 0 0
|
|
||||||
111 0 0 85 24 0 0 0
|
|
||||||
112 0 0 0 0.4 0 0 0
|
|
||||||
113 0 0 0 0 0 0 0
|
|
||||||
114 0 0 0 0 0 0 0
|
|
||||||
115 0 0 299.9 95.7 0 0 0
|
|
||||||
116 205 0 481.8 205 0 0 0
|
|
||||||
117 84 0 28 12 0 0 0
|
|
||||||
118 0 0 69.5 49.3 0 0 0
|
|
||||||
119 0 0 240.7 89 0 0 0
|
|
||||||
120 0 0 40 4 0 0 0
|
|
||||||
121 0 0 136.8 16.6 0 0 0
|
|
||||||
122 1200 0 59.8 24.3 0 0 0
|
|
||||||
123 1200 0 59.8 24.3 0 0 0
|
|
||||||
124 1973 0 489 53 0 0 0
|
|
||||||
125 0 0 800 72 0 0 0
|
|
||||||
126 0 0 35 12 0 0 0
|
|
||||||
127 0 0 41 14 0 0 0
|
|
||||||
128 0 0 38 13 0 0 0
|
|
||||||
129 0 0 42 14 0 0 0
|
|
||||||
130 0 0 -21 -14.2 0 0 0
|
|
||||||
131 0 0 38 13 0 0 0
|
|
||||||
132 0 0 176 105 0 0 0
|
|
||||||
133 450 0 171 70 0 0 0
|
|
||||||
134 0 0 428 232 0 0 0
|
|
||||||
135 0 0 0 0 0 0 0
|
|
||||||
136 0 0 448 143 0 0 0
|
|
||||||
137 0 0 269 157 0 0 0
|
|
||||||
138 0 0 0 0 0 0 0
|
|
||||||
139 84 0 8 3 0 0 0
|
|
||||||
140 0 0 0 0 0 0 0
|
|
||||||
141 0 0 29 14 0 0 0
|
|
||||||
142 0 0 0 0 0 0 0
|
|
||||||
143 0 0 0 0 0 0 0
|
|
||||||
144 0 0 0 0 0 0 0
|
|
||||||
145 -26.48 0 0 0 0 0 0
|
|
||||||
146 0 0 90 49 0 0 0
|
|
||||||
147 0 0 353 130 0 0 0
|
|
||||||
148 -5 0 58 14 0 0 0
|
|
||||||
149 0 0 0 0 0 0 0
|
|
||||||
150 0 0 0 0 0 0 0
|
|
||||||
151 0 0 28 9 0 0 0
|
|
||||||
152 0 0 46 -21 0 0 0
|
|
||||||
153 0 0 0 0 0 0 0
|
|
||||||
154 0 0 58 11.8 0 0 0
|
|
||||||
155 0 0 41 19 0 0 0
|
|
||||||
156 0 0 -5 5 0 0 0
|
|
||||||
157 0 0 10 1 0 0 0
|
|
||||||
158 0 0 227 110 0 0 0
|
|
||||||
159 0 0 70 30 0 0 0
|
|
||||||
160 0 0 0 0 0 0 0
|
|
||||||
161 0 0 208 107 0 0 0
|
|
||||||
162 0 0 0 0 0 0 0
|
|
||||||
163 0 0 0 0 0 0 0
|
|
||||||
164 0 0 0 0 0 0 0
|
|
||||||
165 0 0 44.2 0 0 0 0
|
|
||||||
166 0 0 66 0 0 0 0
|
|
||||||
167 155 0 17.4 0 0 0 0
|
|
||||||
168 290 0 15.8 0 0 0 0
|
|
||||||
169 0 0 60.3 0 0 0 0
|
|
||||||
170 0 0 0 0 0 0 0
|
|
||||||
171 0 0 32 0 0 0 0
|
|
||||||
172 0 0 8.6 0 0 0 0
|
|
||||||
173 0 0 4.6 0 0 0 0
|
|
||||||
174 117 0 112.1 0 0 0 0
|
|
||||||
175 0 0 18.2 0 0 0 0
|
|
||||||
176 0 0 535 55 0 0 0
|
|
||||||
177 0 0 78 1.4 0 0 0
|
|
||||||
178 240 0 276.4 59.3 0 0 0
|
|
||||||
179 0 0 514.8 82.7 0 0 0
|
|
||||||
180 0 0 0 0 0 0 0
|
|
||||||
181 0 0 0 0 0 0 0
|
|
||||||
182 0 0 0 0 0 0 0
|
|
||||||
183 0 0 0 0 0 0 0
|
|
||||||
184 0 0 55.2 18.2 0 0 0
|
|
||||||
185 0 0 595 83.3 0 0 0
|
|
||||||
186 281 0 145 58 0 0 0
|
|
||||||
187 0 0 56.5 24.5 0 0 0
|
|
||||||
188 0 0 63 25 0 0 0
|
|
||||||
189 216 0 0 0 0 0 0
|
|
||||||
190 0 0 200 50 0 0 0
|
|
||||||
191 0 0 123.5 -24.3 0 0 0
|
|
||||||
192 0 0 0 0 0 0 0
|
|
||||||
193 0 0 33 16.5 0 0 0
|
|
||||||
194 0 0 0 0 0 0 0
|
|
||||||
195 0 0 0 0 0 0 0
|
|
||||||
196 0 0 0 0 0 0 0
|
|
||||||
197 0 0 26.5 0 0 0 0
|
|
||||||
198 0 0 0 0 0 0 0
|
|
||||||
199 228 0 5 4 0 0 0
|
|
||||||
200 0 0 74 29 0 0 0
|
|
||||||
201 0 0 73.4 0 0 0 0
|
|
||||||
202 0 0 7 2 0 0 0
|
|
||||||
203 475 0 0 0 0 0 0
|
|
||||||
204 0 0 0 0 0 0 0
|
|
||||||
205 0 0 0 0 0 0 0
|
|
||||||
206 0 0 0 0 0 0 0
|
|
||||||
207 0 0 43 14 0 0 0
|
|
||||||
208 0 0 27 12 0 0 0
|
|
||||||
209 0 0 72 24 0 0 0
|
|
||||||
210 0 0 0 -5 0 0 0
|
|
||||||
211 0 0 12 2 0 0 0
|
|
||||||
212 0 0 7 2 0 0 0
|
|
||||||
213 0 0 0 0 0 0 0
|
|
||||||
214 0 0 22 16 0 0 0
|
|
||||||
215 0 0 47 26 0 0 0
|
|
||||||
216 0 0 131 96 0 0 0
|
|
||||||
217 0 0 173 99 0 0 0
|
|
||||||
218 0 0 410 40 0 0 0
|
|
||||||
219 0 0 223 148 0 0 0
|
|
||||||
220 0 0 96 46 0 0 0
|
|
||||||
221 250 0 255 149 0 0 0
|
|
||||||
222 170 0 0 0 0 0 0
|
|
||||||
223 0 0 77 33 0 0 0
|
|
||||||
224 0 0 29 14 0 0 0
|
|
||||||
225 -4.2 0 0 0 0 0 0
|
|
||||||
226 0 0 0 0 0 0 0
|
|
||||||
227 0 0 0 0 0 0 0
|
|
||||||
228 0 0 4.75 1.56 0 0 0
|
|
||||||
229 0 0 0 0 0 0 0
|
|
||||||
230 0 0 56 15 0 0 0
|
|
||||||
231 0 0 0 0 0 0 0
|
|
||||||
232 -10 0 595 120 0 0 0
|
|
||||||
233 0 0 77 1 0 0 0
|
|
||||||
234 0 0 21 7 0 0 0
|
|
||||||
235 0 0 0 0 0 0 0
|
|
||||||
236 0 0 55 6 0 0 0
|
|
||||||
237 0 0 0 0 0 0 0
|
|
||||||
238 0 0 155 18 0 0 0
|
|
||||||
239 0 0 39 9 0 0 0
|
|
||||||
240 0 0 0 0 0 0 0
|
|
||||||
241 0 0 92 26 0 0 0
|
|
||||||
242 0 0 22 10 0 0 0
|
|
||||||
243 0 0 98 20 0 0 0
|
|
||||||
244 0 0 116 38 0 0 0
|
|
||||||
245 0 0 57 19 0 0 0
|
|
||||||
246 0 0 0 0 0 0 0
|
|
||||||
247 0 0 48 14 0 0 0
|
|
||||||
248 0 0 0 0 0 0 0
|
|
||||||
249 0 0 0 0 0 0 0
|
|
||||||
250 0 0 49.6 0 0 0 0
|
|
||||||
251 0 0 30.7 0 0 0 0
|
|
||||||
252 0 0 63 0 0 0 0
|
|
||||||
253 0 0 14.1 650 0 0 0
|
|
||||||
254 1930 0 0 0 0 0 0
|
|
||||||
255 0 0 777 215 0 0 0
|
|
||||||
256 0 0 229.1 11.8 0 0 0
|
|
||||||
257 0 0 380.8 37 0 0 0
|
|
||||||
258 84 0 0 0 0 0 0
|
|
||||||
259 0 0 163.5 43 0 0 0
|
|
||||||
260 0 0 176 83 0 0 0
|
|
||||||
261 0 0 427.4 173.6 0 0 0
|
|
||||||
262 0 0 182.6 43.6 0 0 0
|
|
||||||
263 0 0 10 3 0 0 0
|
|
||||||
264 0 0 100 75 0 0 0
|
|
||||||
265 100 0 285 100 0 0 0
|
|
||||||
266 0 0 572 244 0 0 0
|
|
||||||
267 0 0 61 30 0 0 0
|
|
||||||
268 0 0 61 30 0 0 0
|
|
||||||
269 0 0 0 0 0 0 0
|
|
||||||
270 0 0 0.86 0.28 0 0 0
|
|
||||||
271 0 0 0 0 0 0 0
|
|
||||||
272 0 0 0 0 0 0 0
|
|
||||||
273 0 0 83 21 0 0 0
|
|
||||||
274 0 0 0 0 0 0 0
|
|
||||||
275 0 0 195 29 0 0 0
|
|
||||||
276 0 0 0 0 0 0 0
|
|
||||||
277 0 0 224 71 0 0 0
|
|
||||||
278 0 0 39.9 0 0 0 0
|
|
||||||
279 0 0 83.5 0 0 0 0
|
|
||||||
280 0 0 77.8 0 0 0 0
|
|
||||||
281 696 0 89.5 35.5 0 0 0
|
|
||||||
282 0 0 24 14 0 0 0
|
|
||||||
283 0 0 0 0 0 0 0
|
|
||||||
284 0 0 0 0 0 0 0
|
|
||||||
285 0 0 0 0 0 0 0
|
|
||||||
286 0 0 126.7 23 0 0 0
|
|
||||||
287 0 0 86 0 0 0 0
|
|
||||||
288 0 0 0 0 0 0 0
|
|
||||||
289 424 0 64 21 0 0 0
|
|
||||||
290 0 0 159 107 0 0 0
|
|
||||||
291 0 0 0 0 0 0 0
|
|
||||||
292 0 0 20 0 0 0 0
|
|
||||||
293 0 0 74 28 0 0 0
|
|
||||||
294 0 0 57.9 5.1 0 0 0
|
|
||||||
295 0 0 273.6 99.8 0 0 0
|
|
||||||
296 0 0 387.7 114.7 0 0 0
|
|
||||||
297 0 0 85 32 0 0 0
|
|
||||||
298 0 0 96 7 0 0 0
|
|
||||||
299 0 0 0 0 0 0 0
|
|
||||||
300 0 0 2.71 0.94 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
148 1.01530000000000 -10 10 0 0 0 0
|
|
||||||
73 1.02050000000000 -20 20 0 0 0 0
|
|
||||||
232 1.00100000000000 -20 20 0 0 0 0
|
|
||||||
159 0.958300000000000 -25 25 0 0 0 0
|
|
||||||
161 0.963200000000000 12 35 0 0 0 0
|
|
||||||
1 1.02500000000000 -240 240 0 0 0 0
|
|
||||||
167 1.05200000000000 -11 96 0 0 0 0
|
|
||||||
168 1.05200000000000 -153 153 0 0 0 0
|
|
||||||
92 1 -30 56 0 0 0 0
|
|
||||||
174 0.990000000000000 -24 77 0 0 0 0
|
|
||||||
254 1.04350000000000 -500 1500 0 0 0 0
|
|
||||||
178 1.02330000000000 -60 120 0 0 0 0
|
|
||||||
179 1.01030000000000 -25 200 0 0 0 0
|
|
||||||
100 1.05500000000000 -125 350 0 0 0 0
|
|
||||||
186 1.05100000000000 -50 75 0 0 0 0
|
|
||||||
281 1.04350000000000 -100 300 0 0 0 0
|
|
||||||
258 1.05280000000000 -15 35 0 0 0 0
|
|
||||||
102 1.05280000000000 -50 100 0 0 0 0
|
|
||||||
103 1.07350000000000 -25 50 0 0 0 0
|
|
||||||
106 1.05350000000000 -50 175 0 0 0 0
|
|
||||||
189 1.04350000000000 -50 90 0 0 0 0
|
|
||||||
108 0.963000000000000 -10 15 0 0 0 0
|
|
||||||
116 0.929000000000000 -40 90 0 0 0 0
|
|
||||||
2 0.982900000000000 -50 150 0 0 0 0
|
|
||||||
199 1.05220000000000 -45 90 0 0 0 0
|
|
||||||
117 1.00770000000000 -15 35 0 0 0 0
|
|
||||||
3 1.05220000000000 -50 80 0 0 0 0
|
|
||||||
122 1.06500000000000 -100 400 0 0 0 0
|
|
||||||
123 1.06500000000000 -100 400 0 0 0 0
|
|
||||||
203 1.05510000000000 -300 300 0 0 0 0
|
|
||||||
124 1.04350000000000 -1000 1000 0 0 0 0
|
|
||||||
289 1.01500000000000 -260 260 0 0 0 0
|
|
||||||
4 1.01000000000000 -150 150 0 0 0 0
|
|
||||||
265 1.00800000000000 -60 60 0 0 0 0
|
|
||||||
133 1 -320 320 0 0 0 0
|
|
||||||
5 1.05000000000000 -300 300 0 0 0 0
|
|
||||||
6 1 -300 300 0 0 0 0
|
|
||||||
7 1.04000000000000 -250 250 0 0 0 0
|
|
||||||
8 1 -500 500 0 0 0 0
|
|
||||||
9 1.01650000000000 -300 300 0 0 0 0
|
|
||||||
221 1.01000000000000 -200 200 0 0 0 0
|
|
||||||
10 1 -400 400 0 0 0 0
|
|
||||||
11 1.05000000000000 -600 600 0 0 0 0
|
|
||||||
222 0.993000000000000 40 100 0 0 0 0
|
|
||||||
139 1.01000000000000 40 80 0 0 0 0
|
|
||||||
28 1.05070000000000 -210 210 0 0 0 0
|
|
||||||
29 1.05070000000000 -280 280 0 0 0 0
|
|
||||||
30 1.03230000000000 -420 420 0 0 0 0
|
|
||||||
31 1.01450000000000 -100 100 0 0 0 0
|
|
||||||
32 1.01450000000000 -224 224 0 0 0 0
|
|
||||||
33 1.05070000000000 0 350 0 0 0 0
|
|
||||||
34 1.05070000000000 0 120 0 0 0 0
|
|
||||||
35 1.02900000000000 -224 224 0 0 0 0
|
|
||||||
36 1.05000000000000 -200 200 0 0 0 0
|
|
||||||
37 1.01450000000000 0 42 0 0 0 0
|
|
||||||
38 1.05070000000000 -500 500 0 0 0 0
|
|
||||||
39 0.996700000000000 0 25 0 0 0 0
|
|
||||||
40 1.02120000000000 -90 90 0 0 0 0
|
|
||||||
41 1.01450000000000 -150 150 0 0 0 0
|
|
||||||
42 1.00170000000000 0 150 0 0 0 0
|
|
||||||
43 0.989300000000000 0 87 0 0 0 0
|
|
||||||
44 1.05070000000000 -100 600 0 0 0 0
|
|
||||||
45 1.05070000000000 -125 325 0 0 0 0
|
|
||||||
46 1.01450000000000 -200 300 0 0 0 0
|
|
||||||
225 0.994500000000000 -2 2 0 0 0 0
|
|
||||||
62 1 -17.3500000000000 17.3500000000000 0 0 0 0
|
|
||||||
145 1 -12.8000000000000 12.8300000000000 0 0 0 0
|
|
||||||
64 1 -38 38 0 0 0 0
|
|
||||||
65 1 -6 6 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
5 0.200000000000000 0.200000000000000 0.137500000000000 210 600 0 0
|
|
||||||
4 0.300000000000000 0.175000000000000 0.175000000000000 200 580 0 0
|
|
||||||
9 0.300000000000000 0.125000000000000 0.100000000000000 200 800 0 0
|
|
||||||
11 0.350000000000000 0.225000000000000 0.128300000000000 300 800 0 0
|
|
||||||
28 0.220000000000000 0.143000000000000 0.250000000000000 300 600 0 0
|
|
||||||
29 0.750000000000000 0.125000000000000 0.250000000000000 300 800 0 0
|
|
||||||
30 0.540000000000000 0.195000000000000 0.252000000000000 600 1600 0 0
|
|
||||||
31 0.380000000000000 0.220000000000000 0.439000000000000 200 400 0 0
|
|
||||||
32 0.360000000000000 0.125000000000000 0.635000000000000 200 500 0 0
|
|
||||||
33 0.900000000000000 0.130000000000000 0.0250000000000000 200 500 0 0
|
|
||||||
34 0.830000000000000 0.230000000000000 0.0730000000000000 100 300 0 0
|
|
||||||
35 0.440000000000000 0.143000000000000 0.312000000000000 320 600 0 0
|
|
||||||
36 0.120000000000000 0.140000000000000 0.665000000000000 400 800 0 0
|
|
||||||
38 0.540000000000000 0.115000000000000 0.102000000000000 600 1600 0 0
|
|
||||||
40 0.660000000000000 0.155000000000000 0.265000000000000 100 350 0 0
|
|
||||||
41 0.820000000000000 0.160000000000000 0.700000000000000 250 600 0 0
|
|
||||||
42 0.440000000000000 0.145000000000000 0.105000000000000 250 600 0 0
|
|
||||||
43 0.350000000000000 0.127000000000000 0.450000000000000 80 300 0 0
|
|
||||||
44 0.540000000000000 0.125000000000000 0.122000000000000 600 1600 0 0
|
|
||||||
45 0.380000000000000 0.200000000000000 0.139000000000000 500 900 0 0
|
|
||||||
46 0.360000000000000 0.125000000000000 0.235000000000000 400 800 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
0 0 0 0 0 0 0 0
|
|
||||||
96
IEEE30PG.dat
96
IEEE30PG.dat
|
|
@ -1,96 +0,0 @@
|
||||||
30 41 100.0 28 0.1
|
|
||||||
1.e-5 2
|
|
||||||
1 1
|
|
||||||
0
|
|
||||||
1 1 2 0.0192 0.0575 0.0264
|
|
||||||
2 1 3 0.0452 0.1852 0.0204
|
|
||||||
3 2 4 0.0570 0.1737 0.0184
|
|
||||||
4 3 4 0.0132 0.0379 0.0042
|
|
||||||
5 2 5 0.0472 0.1983 0.0209
|
|
||||||
6 2 6 0.0581 0.1763 0.0187
|
|
||||||
7 4 6 0.0119 0.0414 0.0045
|
|
||||||
8 5 7 0.0460 0.1160 0.0102
|
|
||||||
9 6 7 0.0267 0.0820 0.0085
|
|
||||||
10 6 8 0.0120 0.0420 0.0045
|
|
||||||
13 9 11 0.0 0.2080 0.0
|
|
||||||
15 12 13 0.0 0.1400 0.0
|
|
||||||
16 12 14 0.1231 0.2559 0.0
|
|
||||||
17 12 15 0.0662 0.1304 0.0
|
|
||||||
18 12 16 0.945 0.1987 0.0
|
|
||||||
19 14 15 0.2210 0.1997 0.0
|
|
||||||
20 16 17 0.0824 0.1923 0.0
|
|
||||||
21 15 18 0.1070 0.2185 0.0
|
|
||||||
22 18 19 0.0639 0.1292 0.0
|
|
||||||
23 19 20 0.0340 0.0680 0.0
|
|
||||||
24 10 20 0.0936 0.2090 0.0
|
|
||||||
25 10 17 0.0324 0.0845 0.0
|
|
||||||
26 10 21 0.0348 0.0749 0.0
|
|
||||||
27 10 22 0.0727 0.1499 0.0
|
|
||||||
28 21 22 0.0116 0.0236 0.0
|
|
||||||
29 15 23 0.1000 0.2020 0.0
|
|
||||||
30 22 24 0.1150 0.1790 0.0
|
|
||||||
31 23 24 0.1320 0.2700 0.0
|
|
||||||
32 24 25 0.1885 0.3292 0.0
|
|
||||||
33 25 26 0.2554 0.3800 0.0
|
|
||||||
34 25 27 0.1093 0.2087 0.0
|
|
||||||
36 27 29 0.2198 0.4153 0.0
|
|
||||||
37 27 30 0.3202 0.6027 0.0
|
|
||||||
38 29 30 0.2399 0.4533 0.0
|
|
||||||
39 8 28 0.0636 0.2000 0.0214
|
|
||||||
40 6 28 0.0169 0.0599 0.0065
|
|
||||||
41 9 10 0.0 0.1100 0.0
|
|
||||||
0
|
|
||||||
10 0.19
|
|
||||||
24 0.043
|
|
||||||
0
|
|
||||||
1 9 6 0.0 0.2080 0.978 0.9 1.1
|
|
||||||
2 6 10 0.0 0.5560 0.969 0.9 1.1
|
|
||||||
3 12 4 0.0 0.2560 0.932 0.9 1.1
|
|
||||||
4 28 27 0.0 0.3960 0.968 0.9 1.1
|
|
||||||
0
|
|
||||||
1 20. 0. 0. 0.
|
|
||||||
2 27.56 2.43 21.7 12.7
|
|
||||||
3 0. 0. 2.4 1.2
|
|
||||||
4 0. 0. 7.6 1.6
|
|
||||||
5 67.56 22.25 94.2 19.
|
|
||||||
6 0. 0. 0. 0.
|
|
||||||
7 0. 0. 22.8 10.9
|
|
||||||
8 74 37.27 30. 30.
|
|
||||||
9 0. 0. 0. 0.
|
|
||||||
10 0. 0. 5.8 2.
|
|
||||||
11 63.93 17.61 0. 0.
|
|
||||||
12 0. 0. 11.2 7.5
|
|
||||||
13 32.91 24.69 0. 0.
|
|
||||||
14 0. 0. 6.2 1.6
|
|
||||||
15 0. 0. 8.2 2.5
|
|
||||||
16 0. 0. 3.5 1.8
|
|
||||||
17 0. 0. 9. 5.8
|
|
||||||
18 0. 0. 3.2 .9
|
|
||||||
19 0. 0. 9.5 3.4
|
|
||||||
20 0. 0. 2.2 .7
|
|
||||||
21 0. 0. 17.5 11.2
|
|
||||||
22 0. 0. 0. 0.
|
|
||||||
23 0. 0. 3.2 1.6
|
|
||||||
24 0. 0. 8.7 6.7
|
|
||||||
25 0. 0. 0. 0.
|
|
||||||
26 0. 0. 3.5 2.3
|
|
||||||
27 0. 0. 0. 0.
|
|
||||||
28 0. 0. 0. 0.
|
|
||||||
29 0. 0. 2.4 .9
|
|
||||||
30 0. 0. 10.6 1.9
|
|
||||||
0
|
|
||||||
1 1.060 -50 50.
|
|
||||||
2 1.045 -40. 60.
|
|
||||||
5 1.010 -40. 40.
|
|
||||||
8 1.010 -10. 40.
|
|
||||||
11 1.082 -6. 24.
|
|
||||||
13 1.071 -6. 24.
|
|
||||||
0
|
|
||||||
1 10. 2.0 2.0 10. 60.
|
|
||||||
2 10. 1.5 2.4 10. 60.
|
|
||||||
5 20. 1.8 0.8 10. 150.
|
|
||||||
8 10. 1.0 1.2 10. 120.
|
|
||||||
11 20. 1.8 0.8 10. 150.
|
|
||||||
13 10. 1.5 2.0 10. 60.
|
|
||||||
0
|
|
||||||
0
|
|
||||||
23
IEEE4PG.dat
23
IEEE4PG.dat
|
|
@ -1,23 +0,0 @@
|
||||||
4 4 1. 18 .1
|
|
||||||
1.e-5 2
|
|
||||||
1 4
|
|
||||||
0
|
|
||||||
1 1 2 .1 .4 0.01528
|
|
||||||
2 1 4 .12 .5 0.0192
|
|
||||||
3 2 4 .08 .4 0.01413
|
|
||||||
0
|
|
||||||
0
|
|
||||||
1 1 3 .0 .3 0.90909 .9 1.15
|
|
||||||
0
|
|
||||||
1 0 0 0.3 0.18
|
|
||||||
2 0 0 0.55 0.13
|
|
||||||
3 0.568188176 0 0 0
|
|
||||||
4 0.300000011 0.26 0 0
|
|
||||||
0
|
|
||||||
3 1.1 -0.1 0.6
|
|
||||||
4 1.05 -0.6 0.6
|
|
||||||
0
|
|
||||||
3 44.4 351. 50. 0.3 1.2
|
|
||||||
4 40.6 389. 50. 0.3 1.2
|
|
||||||
0
|
|
||||||
0
|
|
||||||
13
Initial.m
13
Initial.m
|
|
@ -1,13 +0,0 @@
|
||||||
function [P0,Q0,U,Uangle] = Initial(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum)
|
|
||||||
%**************************************************************************
|
|
||||||
% 程序功能 : 子函数——计算功率不平衡分量等
|
|
||||||
% 编 者:
|
|
||||||
% 编制时间 :2010.12
|
|
||||||
%**************************************************************************
|
|
||||||
%% 计算功率的不平衡分量
|
|
||||||
P0 = sparse(1, Pointpoweri,(PG-PD)/PQstandard); % 求取节点注入有功功率的标幺值
|
|
||||||
Q0 = sparse(1, Pointpoweri,(QG-QD)/PQstandard); % 求取节点注入无功功率的标幺值
|
|
||||||
%% 平启动赋电压初值
|
|
||||||
U = 1*ones(1,Busnum); % 按照平启动给电压幅值赋值
|
|
||||||
Uangle = zeros(1,Busnum); % 按照平启动给电压相角赋值
|
|
||||||
end
|
|
||||||
18
JSMJZM.m
18
JSMJZM.m
|
|
@ -1,18 +0,0 @@
|
||||||
JSM=[0.070244 0.0533 0.004379];
|
|
||||||
JZM=[0.002275 0.047311 0.070318];
|
|
||||||
for I=0.01:0.01:0.08
|
|
||||||
line([0.5 3.5],[I I],'Color',[220 220 220]/255)
|
|
||||||
end
|
|
||||||
hold on
|
|
||||||
plot(1:3,JSM,'k');
|
|
||||||
ylabel('ͳ¼ÆÎó²î')
|
|
||||||
xlabel('ÇéÐÎ')
|
|
||||||
axis([0.5 3.5 0 0.075])
|
|
||||||
text(1,JSM(1)+0.001,'0.0702')
|
|
||||||
text(2,JSM(2)+0.001,'0.0533')
|
|
||||||
text(3,JSM(3)+0.001,'0.0043')
|
|
||||||
hold on
|
|
||||||
plot(1:3,JZM,'k--');
|
|
||||||
text(1-.3,JZM(1)+0.001,'0.0023')
|
|
||||||
text(2-0.3,JZM(2)-0.001,'0.0473')
|
|
||||||
text(3,JZM(3)-0.001,'0.0703')
|
|
||||||
18
JSNZN.m
18
JSNZN.m
|
|
@ -1,18 +0,0 @@
|
||||||
JSN=[0.1213 0.1092 0.0587]*100;
|
|
||||||
JZN=[0.0971 0.1314 0.1408]*100;
|
|
||||||
for I=2:2:14
|
|
||||||
line([0.5 3.5],[I I],'Color',[220 220 220]/255)
|
|
||||||
end
|
|
||||||
hold on
|
|
||||||
plot(1:3,JSN,'k');
|
|
||||||
ylabel('最大相对偏差/%')
|
|
||||||
xlabel('情况')
|
|
||||||
axis([0.5 3.5 0 16])
|
|
||||||
text(1,JSN(1)+0.3,'12.13')
|
|
||||||
text(2,JSN(2)+0.1,'10.92')
|
|
||||||
text(3,JSN(3)+0.6,'5.87')
|
|
||||||
hold on
|
|
||||||
plot(1:3,JZN,'k--');
|
|
||||||
text(1,JZN(1)-0.5,'9.71')
|
|
||||||
text(2,JZN(2)-0.5,'13.14')
|
|
||||||
text(3,JZN(3)-0.5,'14.08')
|
|
||||||
39
Lineloss.m
39
Lineloss.m
|
|
@ -1,39 +0,0 @@
|
||||||
%% 计算线损
|
|
||||||
function [dispLineloss dispTransloss]=Lineloss(Linei,Linej,Liner,Linex,Lineb2,Transi,Transj,Transr,Transx,Branchi,Branchg,Branchb,k0,Volt,Angle)
|
|
||||||
%format long
|
|
||||||
% fprintf('功率为有名值\n');
|
|
||||||
% fprintf('节点号\t节点号\t有功损耗 MW\t无功损耗 MVar')
|
|
||||||
cmpVolt=Volt'.*cos(Angle')+1i*Volt'.*sin(Angle');
|
|
||||||
% cmpVolt=cmpVolt';
|
|
||||||
y0=1i*Lineb2;
|
|
||||||
%yj0=1i*standardinput(:,7);
|
|
||||||
yij=1./(Liner+1i*Linex);
|
|
||||||
%% 线路损耗
|
|
||||||
Sij=cmpVolt(Linei).*conj( cmpVolt(Linei) .* y0 + ( cmpVolt(Linei)- cmpVolt(Linej) ).*yij );
|
|
||||||
Sji=cmpVolt(Linej).*conj( cmpVolt(Linej) .*y0 + ( cmpVolt(Linej)- cmpVolt(Linei) ).*yij );
|
|
||||||
%Sij1==Sij2
|
|
||||||
deltLineS=Sij+Sji;
|
|
||||||
|
|
||||||
%% 另一种计算方式begin
|
|
||||||
% ss=1*(Volt(Linei)'.^2.*abs(yij).*cos( angle(yij) ) -Volt(Linei)'.*Volt(Linej)'.*cos( Angle(Linei)' - Angle(Linej)' - angle(yij)).*abs(yij));
|
|
||||||
% ss=(Volt(Linei)'.^2+Volt(Linej)'.^2).*abs(yij).*cos(angle(yij))-2*Volt(Linei)'.*Volt(Linej)'.*cos( Angle(Linei)' - Angle(Linej)').*cos( - angle(yij)).*abs(yij);
|
|
||||||
% ss=abs(yij).*cos(angle(yij)).*( Volt(Linei)'.^2+Volt(Linej)'.^2- 2*Volt(Linei)'.*Volt(Linej)' .*cos(Angle(Linei)' - Angle(Linej)') );
|
|
||||||
%% 另一种计算方式end
|
|
||||||
dispLineloss=[Linei Linej real(deltLineS)*100 imag(deltLineS)*100];
|
|
||||||
%full(dispLineloss)
|
|
||||||
dispLineloss=sortrows(dispLineloss,-3);
|
|
||||||
full(dispLineloss);
|
|
||||||
%% 以下是变压器损耗
|
|
||||||
yij=1./(Transr+1i*Transx);
|
|
||||||
Sij=cmpVolt(Transi)./k0.*conj( ( cmpVolt(Transi)./k0- cmpVolt(Transj) ).*yij );
|
|
||||||
Sji=cmpVolt(Transj).*conj( ( cmpVolt(Transj)- cmpVolt(Transi)./k0 ).*yij );
|
|
||||||
deltTransS=Sij+Sji;
|
|
||||||
%% 接地支路损耗
|
|
||||||
% 没有考虑变压器变比
|
|
||||||
deltTransS =deltTransS+cmpVolt(Branchi).*conj((cmpVolt(Branchi).*(Branchg+1j*Branchb)));
|
|
||||||
ss=Volt(Branchi)'.^2.*(Branchg)
|
|
||||||
%%
|
|
||||||
dispTransloss=[Transi Transj real(deltTransS)*100 imag(deltTransS)*100];
|
|
||||||
dispTransloss=sortrows(dispTransloss,-3);
|
|
||||||
full(dispTransloss);
|
|
||||||
end
|
|
||||||
|
|
@ -1,14 +0,0 @@
|
||||||
%%
|
|
||||||
% 画正态分布曲线
|
|
||||||
%%
|
|
||||||
|
|
||||||
x=-4:0.1:4;
|
|
||||||
y=gaussmf(x,[1 0]);
|
|
||||||
plot(x,y)
|
|
||||||
hold on
|
|
||||||
% line([0 0],[ 0 1])
|
|
||||||
% set(gca,'xtick',[],'xticklabel',[])
|
|
||||||
% set(gca,'ytick',[],'yticklabel',[])
|
|
||||||
axis([-4 4 0 1.2])
|
|
||||||
axis normal
|
|
||||||
xlabel('gaussmf, P=[2 5]')
|
|
||||||
|
|
@ -1,106 +0,0 @@
|
||||||
clc
|
|
||||||
|
|
||||||
clear
|
|
||||||
for II=1:53
|
|
||||||
tic
|
|
||||||
[kmax,Precision,UAngel,Volt,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,PG,QG,PD,QD,CenterA,PGi,PVQU,PVQL]= ...
|
|
||||||
pf('D:\Project\最小化潮流\最小潮流算例\仙海919.txt');
|
|
||||||
%pf('c:/file31.txt');
|
|
||||||
%pf('ieee118PG.dat');
|
|
||||||
|
|
||||||
%% 计算功率因数
|
|
||||||
atan(PD(QD~=0 | PD~=0)./QD(QD~=0 | PD~=0));
|
|
||||||
Volt;
|
|
||||||
UAngel*180/3.1415926;
|
|
||||||
%% 通过潮流计算PG
|
|
||||||
AngleIJ=sparse(r,c,UAngel(r)-UAngel(c)-Angle',Busnum,Busnum);
|
|
||||||
PGBal=diag(Volt)*Y.*cos(AngleIJ)*Volt';
|
|
||||||
|
|
||||||
%% 初值-即测量值
|
|
||||||
PG0=PG;
|
|
||||||
PD0=PD;
|
|
||||||
|
|
||||||
PDReal=PD;%真值
|
|
||||||
|
|
||||||
%%
|
|
||||||
PG0(Balance)=PGBal(Balance);
|
|
||||||
%%
|
|
||||||
[Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount,wG,wD,PD,PD0,randPDind,Loadi]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL,PD0,QD,PD);
|
|
||||||
PD0(Loadi(II))=PD0(Loadi(II))*(1+0.086);
|
|
||||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
|
||||||
KK=0;
|
|
||||||
plotGap=zeros(1,50);
|
|
||||||
ContrlCount=size(PVi,1)+size(PGi,1)+size(Loadi,1)+Busnum*2;
|
|
||||||
kmax=60;
|
|
||||||
%% 20120523 临时
|
|
||||||
QD_NON_ZERO=QD(PD==0 & QD~=0);
|
|
||||||
QD_NON_ZERO_IND=find(PD==0 & QD~=0);
|
|
||||||
%%
|
|
||||||
while(abs(Gap)>Precision)
|
|
||||||
if KK>kmax
|
|
||||||
break;
|
|
||||||
end
|
|
||||||
plotGap(KK+1)=Gap;
|
|
||||||
Init_u=Gap/2/RestraintCount*CenterA;
|
|
||||||
AngleIJMat=0;
|
|
||||||
%% 开始计算OPF
|
|
||||||
%% 形成等式约束的雅克比
|
|
||||||
deltH=func_deltH(Busnum,Volt,PVi,Y,PGi,UAngel,r,c,Angle,Loadi);
|
|
||||||
%% 形成不等式约束的雅克比
|
|
||||||
deltG=func_deltG(Busnum,PVi,PGi,Loadi);
|
|
||||||
%%
|
|
||||||
L_1Z=diag(Init_Z./Init_L);
|
|
||||||
U_1W=diag(Init_W./Init_U);
|
|
||||||
%% 形成海森阵
|
|
||||||
deltdeltF=func_deltdeltF(PVi,wG,wD,ContrlCount);
|
|
||||||
%% 形成ddHy
|
|
||||||
ddh=func_ddh(Volt,Init_Y,Busnum,PVi,PGi,Y,UAngel,r,c,Angle,Loadi,ContrlCount);
|
|
||||||
%% 开始构建ddg
|
|
||||||
ddg=func_ddg(PGi,PVi,Busnum,RestraintCount,Loadi);
|
|
||||||
%% 开始构建deltF
|
|
||||||
deltF=func_deltF(PG,PVi,PGi,wG,wD,PG0,PD0,PD,Busnum,Loadi);
|
|
||||||
|
|
||||||
%% 形成方程矩阵
|
|
||||||
Luu=Init_U'.*Init_W'+Init_u*ones(RestraintCount,1);
|
|
||||||
Lul=Init_L'.*Init_Z'-Init_u*ones(RestraintCount,1);
|
|
||||||
Mat_G=FormG(Volt,PVi,PGi,PG,QG,PD,Loadi);
|
|
||||||
Mat_H=FormH(Busnum,Volt,PG,PD,QG,QD,Y,UAngel,r,c,Angle,QD_NON_ZERO,QD_NON_ZERO_IND);
|
|
||||||
Ly=Mat_H;
|
|
||||||
Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL,PD0,Loadi,KK);
|
|
||||||
Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU,PD0,Loadi,KK);
|
|
||||||
Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W);
|
|
||||||
YY=FormYY(Lul,Lz,Ly,Luu,Lw,Lx);
|
|
||||||
%% 开始解方程
|
|
||||||
XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,RestraintCount,Lx,Balance,PVi,PGi,Busnum,Loadi);
|
|
||||||
%%取各分量
|
|
||||||
[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX,ContrlCount,RestraintCount,Busnum);
|
|
||||||
[Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel,PD]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi,PD,Loadi);
|
|
||||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
|
||||||
KK=KK+1;
|
|
||||||
end
|
|
||||||
fprintf('迭代次数%d\n',KK);
|
|
||||||
ObjectiveFun(PG,PG0,PGi,PD,PD0,wG,wD,Loadi);
|
|
||||||
%DrawGap(plotGap);
|
|
||||||
%%
|
|
||||||
%Volt=full(Volt');
|
|
||||||
%PD=full(PD);
|
|
||||||
%% 统计PD误差
|
|
||||||
% absPDLoad=abs( (PD(Loadi)-PD0(Loadi))./PD0(Loadi) );
|
|
||||||
absPDLoad=abs( (PD(Loadi)-PDReal(Loadi))./PDReal(Loadi) );
|
|
||||||
maxPDError=max(absPDLoad);
|
|
||||||
%disp('index')
|
|
||||||
LoadiArray=Loadi(absPDLoad==maxPDError);
|
|
||||||
if length(LoadiArray)>1
|
|
||||||
disp('没找出')
|
|
||||||
Loadi(II)
|
|
||||||
end
|
|
||||||
if length(LoadiArray)==1
|
|
||||||
if LoadiArray~=Loadi(II)
|
|
||||||
disp('没找出')
|
|
||||||
Loadi(II)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
toc;
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
@ -1,5 +0,0 @@
|
||||||
function [out_arg]=ObjectiveFun(PG,PG0,PGi,QG,QG0,PVi,PD,PD0,QD,QD0,wPG,wQG,wPD,wQD,Loadi)
|
|
||||||
t4=wPD.*((PD(Loadi)-PD0(Loadi)).*(PD(Loadi)-PD0(Loadi)));
|
|
||||||
t5=wQD.*((QD(Loadi)-QD0(Loadi)).*(QD(Loadi)-QD0(Loadi)));
|
|
||||||
out_arg= sum(t4)+sum(t5);
|
|
||||||
end
|
|
||||||
|
|
@ -1,9 +0,0 @@
|
||||||
function [noDataTransNum noDataTransCapacity noDataTransPowerFactor]=ReadNoDataTrans(fileName)
|
|
||||||
data = dlmread(fileName);
|
|
||||||
tmpMat=sortrows(data,1);
|
|
||||||
noDataTransNum=tmpMat(:,1);
|
|
||||||
%noDataTransCapacity=tmpMat(:,2)/100000;
|
|
||||||
noDataTransCapacity=tmpMat(:,2)/1000;
|
|
||||||
noDataTransPowerFactor=tmpMat(:,3);
|
|
||||||
|
|
||||||
end
|
|
||||||
13
imbalance.m
13
imbalance.m
|
|
@ -1,13 +0,0 @@
|
||||||
function [P0,Q0,U,Uangle]=imbalance(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum)
|
|
||||||
%**************************************************************************
|
|
||||||
% 程序功能 : 子函数——计算功率不平衡分量等
|
|
||||||
% 编 者: 梁 捷
|
|
||||||
% 编制时间 :2010.12
|
|
||||||
%**************************************************************************
|
|
||||||
%% 计算功率的不平衡分量
|
|
||||||
P0=(PG-PD)/PQstandard; % 求取节点注入有功功率的标幺值
|
|
||||||
Q0=(QG-QD)/PQstandard; % 求取节点注入无功功率的标幺值
|
|
||||||
%% 平启动赋电压初值
|
|
||||||
U=ones(1,Busnum); % 按照平启动给电压幅值赋值
|
|
||||||
Uangle=zeros(1,Busnum); % 按照平启动给电压相角赋值
|
|
||||||
end
|
|
||||||
|
|
@ -1,23 +0,0 @@
|
||||||
function [new_G,new_B,GB,Y,r,c,Angle] = modifyadmmatrix(ii,jj,G,B)
|
|
||||||
%**************************************************************************
|
|
||||||
% 程序功能 : 子函数——形成节点导纳矩阵Y
|
|
||||||
% 编 者:
|
|
||||||
% 编制时间:2010.12
|
|
||||||
%**************************************************************************
|
|
||||||
%% 支路导纳计算
|
|
||||||
new_G=G;
|
|
||||||
new_G(ii,jj)=new_G(ii,jj)-G(ii,jj);
|
|
||||||
new_G(jj,ii)=new_G(jj,ii)-G(jj,ii);
|
|
||||||
new_G(ii,ii)=new_G(ii,ii)+G(ii,jj);
|
|
||||||
new_G(jj,jj)=new_G(jj,jj)+G(ii,jj);
|
|
||||||
new_B=B;
|
|
||||||
new_B(ii,jj)=new_B(ii,jj)-B(ii,jj);
|
|
||||||
new_B(jj,ii)=new_B(jj,ii)-B(jj,ii);
|
|
||||||
new_B(ii,ii)=new_B(ii,ii)+B(ii,jj);
|
|
||||||
new_B(jj,jj)=new_B(jj,jj)+B(ii,jj);
|
|
||||||
|
|
||||||
%% 化作极坐标形式
|
|
||||||
GB = new_G+new_B.*1i; %将电导,电纳合并,写成复数形式
|
|
||||||
Y = abs(GB); %求节点导纳幅值
|
|
||||||
[r,c] = find(Y);
|
|
||||||
Angle = angle(GB(GB~=0)); %求节点导纳角度
|
|
||||||
83
openfile.m
83
openfile.m
|
|
@ -1,83 +0,0 @@
|
||||||
function [Busnum,Balance,PQstandard,Precision,Linei,Linej,Liner,Linex,Lineb,kmax,Transfori ,...
|
|
||||||
Transforj,Transforr,Transforx,Transfork0,Branchi,Branchb,Pointpoweri,PG,QG,PD,QD,PVi,PVu,GenU,GenL,GenC,CenterA,PGi,PVQU,PVQL] = openfile(FileName)
|
|
||||||
%**************************************************************************
|
|
||||||
% 程序简介 : 子函数——读取潮流计算所需数据
|
|
||||||
% 编 者:
|
|
||||||
% 编制时间 :2010.12
|
|
||||||
%**************************************************************************
|
|
||||||
data = dlmread(FileName); % 一次读入全部数据
|
|
||||||
zeroRow = find(data(:,1)==0);
|
|
||||||
Busnum= data(1,1); % 节点数
|
|
||||||
PQstandard = data(1,3); % 基准容量
|
|
||||||
kmax = data(1,4); %最大迭代次数
|
|
||||||
Precision = data(2,1); % 精度
|
|
||||||
%Balance = data(3,2);
|
|
||||||
Balance=data(3:zeroRow(1)-1,2);% 生成1到节点号的列向量
|
|
||||||
CenterA=data(1,5); %中心参数
|
|
||||||
LineNum=data(1,2); %支路数
|
|
||||||
Base=data(1,3);
|
|
||||||
%% 各参数矩阵分块
|
|
||||||
|
|
||||||
line = data(zeroRow(1)+1:zeroRow(2)-1,:); % 形成线路参数矩阵
|
|
||||||
ground = data(zeroRow(2)+1:zeroRow(3)-1,:); % 形成对地支路参数矩阵
|
|
||||||
tran = data(zeroRow(3)+1:zeroRow(4)-1,:); % 形成变压器参数矩阵
|
|
||||||
buspq = data(zeroRow(4)+1:zeroRow(5)-1,:); % 形成节点功率参数矩阵
|
|
||||||
PV = data(zeroRow(5)+1:zeroRow(6)-1,:); % 形成pv节点功率参数矩阵
|
|
||||||
Gen=data(zeroRow(6)+1:zeroRow(7)-1,:);
|
|
||||||
%% 线路参数矩阵分块
|
|
||||||
Linei = line(:,2); % 节点i
|
|
||||||
Linej= line(:,3); % 节点j
|
|
||||||
Liner = line(:,4); % 线路电阻
|
|
||||||
Linex = line(:,5); % 线路电抗
|
|
||||||
Lineb = line(:,6); % b/2
|
|
||||||
%% 对地支路参数矩阵
|
|
||||||
Branchi = ground(:,1); % 对地支路节点号
|
|
||||||
Branchb = ground(:,2); % 对地支路的导纳
|
|
||||||
%% 变压器参数矩阵
|
|
||||||
Transfori = tran(:,2); % 节点i
|
|
||||||
Transforj= tran(:,3); % 节点j
|
|
||||||
Transforr = tran(:,4); % 变压器电阻
|
|
||||||
Transforx= tran(:,5); % 变压器电抗
|
|
||||||
Transfork0 = tran(:,6); % 变压器变比
|
|
||||||
%% 节点功率参数矩阵
|
|
||||||
Pointpoweri = buspq(:,1);
|
|
||||||
PG=buspq(:,2); % 发电机有功
|
|
||||||
QG=buspq(:,3); % 发电机无功
|
|
||||||
PD=buspq(:,4); % 负荷有功
|
|
||||||
QD=buspq(:,5); % 负荷无功
|
|
||||||
%%除以基值
|
|
||||||
PG=PG/Base;
|
|
||||||
QG=QG/Base;
|
|
||||||
PD=PD/Base;
|
|
||||||
QD=QD/Base;
|
|
||||||
%%
|
|
||||||
PD=sparse(PD)/Base;
|
|
||||||
QD=sparse(QD)/Base;
|
|
||||||
PG=sparse(PG)/Base;
|
|
||||||
QG=sparse(QG)/Base;
|
|
||||||
%% pv节点功率参数矩阵
|
|
||||||
PVi = PV(:,1); % PV节点的节点号
|
|
||||||
PVu = PV(:,2); % PV节点电压
|
|
||||||
PVQL=PV(:,3);%PV节点无功下限
|
|
||||||
PVQL=PVQL/Base;
|
|
||||||
PVQU=PV(:,4); %PV节点无功上限
|
|
||||||
PVQU=PVQU/Base;
|
|
||||||
%% 发电机参数
|
|
||||||
%GenU=Gen(:,[1 5 6]);
|
|
||||||
%GenL=Gen(:,[1 7 8]);
|
|
||||||
GenC=Gen(:,[1 2:4]);
|
|
||||||
t=GenC(:,2);
|
|
||||||
GenC(:,2)=GenC(:,4);
|
|
||||||
GenC(:,4)=t;
|
|
||||||
%%%%%%%%%%%%%%%%%%%%
|
|
||||||
%GenC(:,2:4)=100*GenC(:,2:4);
|
|
||||||
t=Gen(:,[1 5]);
|
|
||||||
%GenL=[t,PVQL(PVi)];
|
|
||||||
GenL=t;%有功下界
|
|
||||||
GenL(:,2)=GenL(:,2)/Base;
|
|
||||||
t=Gen(:,[1 6]);
|
|
||||||
%GenU=[t,PVQU(PVi)];
|
|
||||||
GenU=t;%有功上届
|
|
||||||
GenU(:,2)=GenU(:,2)/Base;
|
|
||||||
PGi=Gen(:,1);%发电机节点号
|
|
||||||
end
|
|
||||||
86
openfile2.m
86
openfile2.m
|
|
@ -1,86 +0,0 @@
|
||||||
function [Busnum,Balance,PQstandard,Precision,Linei,Linej,Liner,Linex,Lineb,kmax,Transfori ,...
|
|
||||||
Transforj,Transforr,Transforx,Transfork0,Branchi,Branchg,Branchb,Pointpoweri,PG,QG,PD,QD,PVi,PVu,GenU,GenL,GenC,CenterA,PGi,PVQU,PVQL] = openfile2(FileName)
|
|
||||||
%**************************************************************************
|
|
||||||
% 程序简介 : 子函数——读取潮流计算所需数据
|
|
||||||
% 编 者:
|
|
||||||
% 编制时间 :2010.12
|
|
||||||
%**************************************************************************
|
|
||||||
data = dlmread(FileName); % 一次读入全部数据
|
|
||||||
zeroRow = find(data(:,1)==0);
|
|
||||||
Busnum= data(1,1); % 节点数
|
|
||||||
PQstandard = data(1,3); % 基准容量
|
|
||||||
kmax = 60;%data(1,4); %最大迭代次数
|
|
||||||
Precision = data(1,4); % 精度
|
|
||||||
%Balance = data(3,2);
|
|
||||||
Balance=data(3:zeroRow(2)-1,2);% 生成1到节点号的列向量
|
|
||||||
CenterA=0.1;%data(1,5); %中心参数
|
|
||||||
LineNum=data(1,2); %支路数
|
|
||||||
Base=data(1,3);
|
|
||||||
%% 各参数矩阵分块
|
|
||||||
|
|
||||||
line = data(zeroRow(2)+1:zeroRow(3)-1,:); % 形成线路参数矩阵
|
|
||||||
ground = data(zeroRow(5)+1:zeroRow(6)-1,:); % 形成对地支路参数矩阵
|
|
||||||
tran = data(zeroRow(3)+1:zeroRow(4)-1,:); % 形成变压器参数矩阵
|
|
||||||
buspq = data(zeroRow(8)+1:zeroRow(9)-1,:); % 形成节点功率参数矩阵
|
|
||||||
PV = data(zeroRow(11)+1:zeroRow(12)-1,:); % 形成pv节点功率参数矩阵
|
|
||||||
GenP=data(zeroRow(9)+1:zeroRow(10)-1,:);
|
|
||||||
GenQ=data(zeroRow(11)+1:zeroRow(12)-1,:);
|
|
||||||
%% 线路参数矩阵分块
|
|
||||||
Linei = line(:,2); % 节点i
|
|
||||||
Linej= line(:,3); % 节点j
|
|
||||||
Liner = line(:,4); % 线路电阻
|
|
||||||
Linex = line(:,5); % 线路电抗
|
|
||||||
Lineb = line(:,6); % b/2
|
|
||||||
%% 对地支路参数矩阵
|
|
||||||
Branchi = ground(:,2); % 对地支路节点号
|
|
||||||
Branchb = ground(:,4); % 对地支路的导纳
|
|
||||||
Branchg = ground(:,3); % 对地支路的导纳
|
|
||||||
%% 变压器参数矩阵
|
|
||||||
Transfori = tran(:,3); % 节点i
|
|
||||||
Transforj= tran(:,4); % 节点j
|
|
||||||
Transforr = tran(:,5); % 变压器电阻
|
|
||||||
Transforx= tran(:,6); % 变压器电抗
|
|
||||||
Transfork0 = tran(:,7); % 变压器变比
|
|
||||||
%% 节点功率参数矩阵
|
|
||||||
Pointpoweri = buspq(:,3);
|
|
||||||
PG=buspq(:,5); % 发电机有功
|
|
||||||
QG=buspq(:,6); % 发电机无功
|
|
||||||
PD=buspq(:,7); % 负荷有功
|
|
||||||
QD=buspq(:,8); % 负荷无功
|
|
||||||
%%除以基值
|
|
||||||
PG=PG/Base;
|
|
||||||
QG=QG/Base;
|
|
||||||
PD=PD/Base;
|
|
||||||
QD=QD/Base;
|
|
||||||
%%
|
|
||||||
PD=sparse(PD);
|
|
||||||
QD=sparse(QD);
|
|
||||||
%QD=PD*sqrt(1-.85^2)/.85;
|
|
||||||
PG=sparse(PG);
|
|
||||||
QG=sparse(QG);
|
|
||||||
%% pv节点功率参数矩阵
|
|
||||||
PVi = PV(:,3); % PV节点的节点号
|
|
||||||
PVu = PV(:,5); % PV节点电压
|
|
||||||
PVQL=PV(:,6);%PV节点无功下限
|
|
||||||
PVQL=PVQL/Base;
|
|
||||||
PVQU=PV(:,7); %PV节点无功上限
|
|
||||||
PVQU=PVQU/Base;
|
|
||||||
%% 发电机参数
|
|
||||||
%GenU=Gen(:,[1 5 6]);
|
|
||||||
%GenL=Gen(:,[1 7 8]);
|
|
||||||
GenC=GenP(:,[3 7:9]);
|
|
||||||
t=GenC(:,2);
|
|
||||||
GenC(:,2)=GenC(:,4);
|
|
||||||
GenC(:,4)=t;
|
|
||||||
%%%%%%%%%%%%%%%%%%%%
|
|
||||||
%GenC(:,2:4)=100*GenC(:,2:4);
|
|
||||||
t=GenP(:,[3 5]);
|
|
||||||
%GenL=[t,PVQL(PVi)];
|
|
||||||
GenL=t;%有功下界
|
|
||||||
GenL(:,2)=GenL(:,2)/Base;
|
|
||||||
t=GenP(:,[3 6]);
|
|
||||||
%GenU=[t,PVQU(PVi)];
|
|
||||||
GenU=t;%有功上届
|
|
||||||
GenU(:,2)=GenU(:,2)/Base;
|
|
||||||
PGi=GenP(:,3);%发电机节点号
|
|
||||||
end
|
|
||||||
34
pf.m
34
pf.m
|
|
@ -1,34 +0,0 @@
|
||||||
function [kmax,Precision,Uangle,U,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,PG,QG,PD,QD,CenterA,PGi,PVQU,PVQL,Liner,Linex,Lineb,Transforr,Transforx,Branchi,Branchg,Branchb,Transfork0]=pf(FileName)
|
|
||||||
%**************************************************************************
|
|
||||||
% 程序名称:电力系统潮流计算程序
|
|
||||||
% 程序算法:极坐标下的牛顿-拉夫逊法
|
|
||||||
% 程序功能:主函数
|
|
||||||
% 程序编者:
|
|
||||||
% 编制时间:2010.12
|
|
||||||
%**************************************************************************
|
|
||||||
%clc;
|
|
||||||
tic;
|
|
||||||
%% 读取数据文件
|
|
||||||
[Busnum,Balance,PQstandard,Precision,Linei,Linej,Liner,Linex,Lineb,kmax,Transfori ,...
|
|
||||||
Transforj,Transforr,Transforx,Transfork0,Branchi,Branchg,Branchb,Pointpoweri,PG,QG,PD,QD,PVi,PVu,GenU,GenL,GenC,CenterA,PGi,PVQU,PVQL]= openfile2(FileName);
|
|
||||||
%% 形成节点导纳矩阵
|
|
||||||
[GB,Y,r,c,Angle] = admmatrix(Busnum,Linei,Linej,Liner,Linex,Lineb,Transfori,Transforj,Transforr,...
|
|
||||||
Transforx,Transfork0,Branchi,Branchg,Branchb);
|
|
||||||
[P0,Q0,U,Uangle] = Initial(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum); %求功率不平衡量
|
|
||||||
%disp('迭代次数i 最大不平衡量');
|
|
||||||
%% 循环体计算
|
|
||||||
for i = 0:kmax
|
|
||||||
[Jacob,PQ,U,Uangle] = jacobian(Busnum,Balance,PVi,PVu,U,Uangle,Y,Angle,P0,Q0,r,c); %形成雅克比矩阵
|
|
||||||
% disp('第一次雅克比');
|
|
||||||
m = max(abs(PQ));
|
|
||||||
m=full(m);
|
|
||||||
%fprintf(' %u %.8f \n',i,m);
|
|
||||||
if m > Precision %判断不平衡量是否满足精度要求
|
|
||||||
[Uangle,U] = solvefun(Busnum,Jacob,PQ,Uangle,U); %求解修正方程,更新电压变量
|
|
||||||
else
|
|
||||||
disp(['收敛,迭代次数为',num2str(i),'次']);
|
|
||||||
break %若满足精度要求,则计算收敛
|
|
||||||
end
|
|
||||||
end
|
|
||||||
toc;
|
|
||||||
end
|
|
||||||
61
plotVolt.m
61
plotVolt.m
|
|
@ -1,61 +0,0 @@
|
||||||
%% 画电压,为了写论文用
|
|
||||||
load('case1V.mat');
|
|
||||||
CV1=Volt;
|
|
||||||
load('case2V.mat');
|
|
||||||
CV2=Volt;
|
|
||||||
load('case3V.mat');
|
|
||||||
CV3=Volt;
|
|
||||||
load('case4V.mat');
|
|
||||||
CV4=Volt;%负荷曲线偏差大
|
|
||||||
load('caseR.mat');
|
|
||||||
CVR=Volt;
|
|
||||||
load('caseM.mat');
|
|
||||||
CVM=Volt;
|
|
||||||
subplot(3,2,1)
|
|
||||||
hist(CVR)
|
|
||||||
xlabel('电压/p.u');
|
|
||||||
ylabel('数量/个');
|
|
||||||
title('真实值电压分布')
|
|
||||||
subplot(3,2,2)
|
|
||||||
hist(CVM)
|
|
||||||
xlabel('电压/p.u');
|
|
||||||
ylabel('数量/个');
|
|
||||||
title('测量值电压分布')
|
|
||||||
subplot(3,2,3)
|
|
||||||
hist(CV1)
|
|
||||||
xlabel('电压/p.u');
|
|
||||||
ylabel('数量/个');
|
|
||||||
title('100%可知情形电压分布')
|
|
||||||
subplot(3,2,4)
|
|
||||||
hist(CV2)
|
|
||||||
xlabel('电压/p.u');
|
|
||||||
ylabel('数量/个');
|
|
||||||
title('50%可知情形电压分布')
|
|
||||||
subplot(3,2,5)
|
|
||||||
hist(CV3)
|
|
||||||
xlabel('电压/p.u');
|
|
||||||
ylabel('数量/个');
|
|
||||||
title('始端覆盖情形电压分布')
|
|
||||||
subplot(3,2,6)
|
|
||||||
hist(CV4)
|
|
||||||
xlabel('电压/p.u');
|
|
||||||
ylabel('数量/个');
|
|
||||||
title('典型负荷曲线偏差大情形电压分布')
|
|
||||||
|
|
||||||
% figure()
|
|
||||||
% hold on
|
|
||||||
%
|
|
||||||
% plot(CVR)
|
|
||||||
% title('真实值')
|
|
||||||
%
|
|
||||||
% plot(CVM)
|
|
||||||
% title('测量值')
|
|
||||||
%
|
|
||||||
% plot(CV1)
|
|
||||||
% title('Case 1')
|
|
||||||
%
|
|
||||||
% plot(CV2)
|
|
||||||
% title('Case 2')
|
|
||||||
%
|
|
||||||
% plot(CV3)
|
|
||||||
% title('Case 3')
|
|
||||||
13
solvefun.m
13
solvefun.m
|
|
@ -1,13 +0,0 @@
|
||||||
function[Uangle,U] = solvefun(Busnum,Jacob,PQ,Uangle,U)
|
|
||||||
%**************************************************************************
|
|
||||||
% 程序功能 : 子函数——求解修正方程
|
|
||||||
% 编 者:
|
|
||||||
% 编制时间:2010.12
|
|
||||||
%**************************************************************************
|
|
||||||
%% 计算修正方程
|
|
||||||
PQ = sparse(PQ);
|
|
||||||
X = (Jacob\-PQ')';
|
|
||||||
%% 更新电压变量
|
|
||||||
Uangle = Uangle+X(1:Busnum); % 更新电压相角
|
|
||||||
U = U+U.*X(Busnum+1:end); % 更新电压幅值
|
|
||||||
end
|
|
||||||
97
test.m
97
test.m
|
|
@ -1,97 +0,0 @@
|
||||||
%% Test
|
|
||||||
clear
|
|
||||||
arraymaxPDError=zeros(54,1);
|
|
||||||
for HH=0:53
|
|
||||||
|
|
||||||
arraymaxPDError(HH+1)=-100;
|
|
||||||
for CC=1:250
|
|
||||||
tic
|
|
||||||
[kmax,Precision,UAngel,Volt,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,PG,QG,PD,QD,CenterA,PGi,PVQU,PVQL]= ...
|
|
||||||
pf('D:\Project\最小化潮流\最小潮流算例\仙海919.txt');
|
|
||||||
%pf('c:/file31.txt');
|
|
||||||
%pf('ieee10471PG.dat');
|
|
||||||
|
|
||||||
%PVi电压节点序号
|
|
||||||
%PVu电压节点电压标幺值
|
|
||||||
Volt;
|
|
||||||
UAngel*180/3.1415926;
|
|
||||||
%Precision=Precision/1000000;
|
|
||||||
%Precision=Precision*1000;
|
|
||||||
%% 通过潮流计算PG
|
|
||||||
AngleIJ=sparse(r,c,UAngel(r)-UAngel(c)-Angle',Busnum,Busnum);
|
|
||||||
PGBal=diag(Volt)*Y.*cos(AngleIJ)*Volt';
|
|
||||||
|
|
||||||
%% 初值
|
|
||||||
PG0=PG;
|
|
||||||
PD0=PD;
|
|
||||||
%%
|
|
||||||
PG0(Balance)=PGBal(Balance);
|
|
||||||
%%
|
|
||||||
[Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount,wG,wD,PD,PD0,randPDind,Loadi]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL,PD0,QD,HH);
|
|
||||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
|
||||||
KK=0;
|
|
||||||
plotGap=zeros(1,50);
|
|
||||||
ContrlCount=size(PVi,1)+size(PGi,1)+size(Loadi,1)+Busnum*2;
|
|
||||||
kmax=600;
|
|
||||||
%% 20120523 临时
|
|
||||||
QD_NON_ZERO=QD(PD==0 & QD~=0);
|
|
||||||
QD_NON_ZERO_IND=find(PD==0 & QD~=0);
|
|
||||||
%%
|
|
||||||
while(abs(Gap)>Precision)
|
|
||||||
if KK>kmax
|
|
||||||
break;
|
|
||||||
end
|
|
||||||
plotGap(KK+1)=Gap;
|
|
||||||
Init_u=Gap/2/RestraintCount*CenterA;
|
|
||||||
%AngleIJMat=0;
|
|
||||||
%% 开始计算OPF
|
|
||||||
%% 形成等式约束的雅克比
|
|
||||||
deltH=func_deltH(Busnum,Volt,PVi,Y,PGi,UAngel,r,c,Angle,Loadi);
|
|
||||||
%% 形成不等式约束的雅克比
|
|
||||||
deltG=func_deltG(Busnum,PVi,PGi,Loadi);
|
|
||||||
%%
|
|
||||||
L_1Z=diag(Init_Z./Init_L);
|
|
||||||
U_1W=diag(Init_W./Init_U);
|
|
||||||
%% 形成海森阵
|
|
||||||
deltdeltF=func_deltdeltF(PVi,wG,wD,ContrlCount);
|
|
||||||
%% 形成ddHy
|
|
||||||
ddh=func_ddh(Volt,Init_Y,Busnum,PVi,PGi,Y,UAngel,r,c,Angle,Loadi,ContrlCount);
|
|
||||||
%% 开始构建ddg
|
|
||||||
ddg=func_ddg(PGi,PVi,Busnum,RestraintCount,Loadi);
|
|
||||||
%% 开始构建deltF
|
|
||||||
deltF=func_deltF(PG,PVi,PGi,wG,wD,PG0,PD0,PD,Busnum,Loadi);
|
|
||||||
|
|
||||||
%% 形成方程矩阵
|
|
||||||
Luu=Init_U'.*Init_W'+Init_u*ones(RestraintCount,1);
|
|
||||||
Lul=Init_L'.*Init_Z'-Init_u*ones(RestraintCount,1);
|
|
||||||
Mat_G=FormG(Volt,PVi,PGi,PG,QG,PD,Loadi);
|
|
||||||
Mat_H=FormH(Busnum,Volt,PG,PD,QG,QD,Y,UAngel,r,c,Angle,QD_NON_ZERO,QD_NON_ZERO_IND);
|
|
||||||
Ly=Mat_H;
|
|
||||||
Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL,PD0,Loadi,KK);
|
|
||||||
Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU,PD0,Loadi,KK);
|
|
||||||
Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W);
|
|
||||||
%%YY=FormYY(Lul,Lz,Ly,Luu,Lw,Lx);
|
|
||||||
%% 开始解方程
|
|
||||||
XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,RestraintCount,Lx,Balance,PVi,PGi,Busnum,Loadi);
|
|
||||||
%%取各分量
|
|
||||||
[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX,ContrlCount,RestraintCount,Busnum);
|
|
||||||
[Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel,PD]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi,PD,Loadi);
|
|
||||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
|
||||||
KK=KK+1;
|
|
||||||
end
|
|
||||||
fprintf('迭代次数%d\n',KK);
|
|
||||||
ObjectiveFun(PG,PG0,PGi,PD,PD0,wG,wD,Loadi);
|
|
||||||
%DrawGap(plotGap);
|
|
||||||
%%
|
|
||||||
%Volt=full(Volt');
|
|
||||||
%PD=full(PD);
|
|
||||||
%% 统计PD误差
|
|
||||||
maxPDError=max(abs( (PD(Loadi)-PD0(Loadi))./PD0(Loadi) ));
|
|
||||||
if maxPDError>arraymaxPDError(HH+1)
|
|
||||||
arraymaxPDError(HH+1)=maxPDError;
|
|
||||||
end
|
|
||||||
toc
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
Loading…
Reference in New Issue