125 lines
5.0 KiB
Python
125 lines
5.0 KiB
Python
from core import *
|
|
import timeit
|
|
|
|
|
|
def egm():
|
|
cccCount=0
|
|
for u_bar in range(1):
|
|
u_ph = math.sqrt(1) * 750 * math.cos(2 * math.pi / 3 * 0) / 1.732 # 运行相电压
|
|
h_whole = 140 # 杆塔全高
|
|
insulator_c_len = 6.8 # 串子绝缘长度
|
|
string_c_len = 9.2
|
|
string_g_len = 0.5
|
|
dgc = -2.9 # 导地线水平距离
|
|
vertical_dgc = 2.7 # 导地线挂点垂直距离
|
|
h_g_avr_sag = 11.67 * 2 / 3
|
|
h_c_avr_sag = (14.43 - 11.67) * 2 / 3
|
|
h_gav = h_whole - string_g_len - h_g_avr_sag # 地线对地平均高
|
|
h_cav = h_gav - string_c_len - vertical_dgc - h_c_avr_sag # 导线对地平均高
|
|
shield_angle = math.atan(dgc / (vertical_dgc + string_c_len)) * 180 / math.pi
|
|
print(f"保护角{shield_angle:.3f}°")
|
|
# 迭代法计算最大电流
|
|
i_max = 0
|
|
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
|
_min_i = i_min # 尝试的最小电流
|
|
_max_i = 200 # 尝试的最大电流
|
|
#TODO remove it
|
|
cad = Draw()
|
|
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
|
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
|
|
print(f"尝试计算电流为{i_bar:.2f}")
|
|
rs = rs_fun(i_bar)
|
|
rc = rc_fun(i_bar, u_ph)
|
|
rg = rg_fun(i_bar, h_cav)
|
|
#######
|
|
cccCount+=1
|
|
if cccCount%30==0:
|
|
import core
|
|
core.gMSP.add_circle((0, h_gav), rs)
|
|
core.gMSP.add_circle((dgc, h_cav), rc_fun(i_bar, -u_ph),dxfattribs={"color": 4})
|
|
core.gMSP.add_circle((dgc, h_cav), rc)
|
|
#######
|
|
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
|
if not circle_intersection: # if circle_intersection is []
|
|
# print("保护弧和暴露弧无交点,检查设置参数。程序退出。")
|
|
continue
|
|
circle_rc_line_intersection = solve_circle_line_intersection(
|
|
rc, rg, dgc, h_cav
|
|
)
|
|
if not circle_rc_line_intersection:
|
|
continue
|
|
min_distance_intersection = (
|
|
np.sum(
|
|
(
|
|
np.array(circle_intersection)
|
|
- np.array(circle_rc_line_intersection)
|
|
)
|
|
** 2
|
|
)
|
|
** 0.5
|
|
) # 计算两圆交点和地面直线交点的最小距离
|
|
i_max = i_bar
|
|
if min_distance_intersection < 0.1:
|
|
break
|
|
if circle_intersection[1] < circle_rc_line_intersection[1]:
|
|
circle_rs_line_intersection = solve_circle_line_intersection(
|
|
rs, rg, 0, h_gav
|
|
)
|
|
# 判断与保护弧的交点是否在暴露弧外面
|
|
distance = (
|
|
np.sum(
|
|
(np.array(circle_rs_line_intersection) - np.array([dgc, h_cav]))
|
|
** 2
|
|
)
|
|
** 0.5
|
|
)
|
|
if distance > rc:
|
|
print("暴露弧已经完全被屏蔽")
|
|
break
|
|
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
|
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
|
|
cad.save()
|
|
# 判断是否导线已经被完全保护
|
|
if abs(i_max - _max_i) < 1e-5:
|
|
print("无法找到最大电流,可能是杆塔较高。")
|
|
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
|
print(f"最大电流为{i_max:.2f}")
|
|
print(f"最小电流为{i_min:.2f}")
|
|
curt_fineness = 0.1 # 电流积分细度
|
|
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
|
print("最大电流小于最小电流,没有暴露弧,程序结束。")
|
|
return
|
|
# 开始积分
|
|
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
|
calculus = 0
|
|
i_curt_samples, d_curt = np.linspace(
|
|
i_min, i_max, curt_segment_n + 1, retstep=True
|
|
)
|
|
for i_curt in i_curt_samples[:-1]:
|
|
cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
|
cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
|
cal_thunder_density_first = thunder_density(i_curt)
|
|
cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
|
calculus += (
|
|
(
|
|
cal_bd_first * cal_thunder_density_first
|
|
+ cal_bd_second * cal_thunder_density_second
|
|
)
|
|
/ 2
|
|
* d_curt
|
|
)
|
|
n_sf = 2 * 2.7 / 10 * calculus # 跳闸率
|
|
print(f"跳闸率是{n_sf:.6}")
|
|
|
|
|
|
def speed():
|
|
a = 0
|
|
for bar in range(100000000):
|
|
a += bar
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_time = timeit.timeit("egm()", globals=globals(), number=1)
|
|
print(f"运行时间:{run_time:.2f}s")
|
|
print("Finished.")
|