148 lines
5.8 KiB
Python
148 lines
5.8 KiB
Python
import numpy as np
|
||
|
||
from core import *
|
||
import timeit
|
||
|
||
|
||
def egm():
|
||
# TODO to be removed
|
||
cccCount = 0
|
||
avr_n_sf = 0 # 考虑电压的影响
|
||
voltage_n = 3 # 工作电压分成多少份来计算
|
||
ng = func_ng(20)
|
||
h_whole = 140 # 杆塔全高
|
||
insulator_c_len = 6.8 # 串子绝缘长度
|
||
string_c_len = 9.2
|
||
string_g_len = 0.5
|
||
dgc = -0.9 # 导地线水平距离
|
||
vertical_dgc = 2.7 # 导地线挂点垂直距离
|
||
h_g_avr_sag = 11.67 * 2 / 3
|
||
h_c_avr_sag = (14.43 - 11.67) * 2 / 3
|
||
h_gav = h_whole - string_g_len - h_g_avr_sag # 地线对地平均高
|
||
h_cav = h_gav - string_c_len - vertical_dgc - h_c_avr_sag # 导线对地平均高
|
||
shield_angle = math.atan(dgc / (vertical_dgc + string_c_len)) * 180 / math.pi
|
||
print(f"保护角{shield_angle:.3f}°")
|
||
for u_bar in range(voltage_n):
|
||
u_ph = (
|
||
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
|
||
) # 运行相电压
|
||
# 迭代法计算最大电流
|
||
i_max = 0
|
||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||
_min_i = i_min # 尝试的最小电流
|
||
_max_i = 200 # 尝试的最大电流
|
||
# TODO remove it
|
||
cad = Draw()
|
||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
||
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
|
||
# print(f"尝试计算电流为{i_bar:.2f}")
|
||
rs = rs_fun(i_bar)
|
||
rc = rc_fun(i_bar, u_ph)
|
||
rg = rg_fun(i_bar, h_cav)
|
||
#######
|
||
cccCount += 1
|
||
if cccCount % 30 == 0:
|
||
import core
|
||
|
||
core.gMSP.add_circle((0, h_gav), rs)
|
||
core.gMSP.add_circle(
|
||
(dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
|
||
)
|
||
core.gMSP.add_circle((dgc, h_cav), rc)
|
||
#######
|
||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||
if not circle_intersection: # if circle_intersection is []
|
||
# print("保护弧和暴露弧无交点,检查设置参数。程序退出。")
|
||
continue
|
||
circle_rc_line_intersection = solve_circle_line_intersection(
|
||
rc, rg, dgc, h_cav
|
||
)
|
||
if not circle_rc_line_intersection:
|
||
continue
|
||
min_distance_intersection = (
|
||
np.sum(
|
||
(
|
||
np.array(circle_intersection)
|
||
- np.array(circle_rc_line_intersection)
|
||
)
|
||
** 2
|
||
)
|
||
** 0.5
|
||
) # 计算两圆交点和地面直线交点的最小距离
|
||
i_max = i_bar
|
||
if min_distance_intersection < 0.1:
|
||
break
|
||
if circle_intersection[1] < circle_rc_line_intersection[1]:
|
||
circle_rs_line_intersection = solve_circle_line_intersection(
|
||
rs, rg, 0, h_gav
|
||
)
|
||
# 判断与保护弧的交点是否在暴露弧外面
|
||
distance = (
|
||
np.sum(
|
||
(np.array(circle_rs_line_intersection) - np.array([dgc, h_cav]))
|
||
** 2
|
||
)
|
||
** 0.5
|
||
)
|
||
if distance > rc:
|
||
print("暴露弧已经完全被屏蔽")
|
||
break
|
||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
||
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
|
||
cad.save()
|
||
# 判断是否导线已经被完全保护
|
||
if abs(i_max - _max_i) < 1e-5:
|
||
print("无法找到最大电流,可能是杆塔较高。")
|
||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||
print(f"最大电流为{i_max:.2f}")
|
||
print(f"最小电流为{i_min:.2f}")
|
||
curt_fineness = 0.1 # 电流积分细度
|
||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||
print("最大电流小于最小电流,没有暴露弧,程序结束。")
|
||
return
|
||
# 开始积分
|
||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||
calculus = 0
|
||
i_curt_samples, d_curt = np.linspace(
|
||
i_min, i_max, curt_segment_n + 1, retstep=True
|
||
)
|
||
bd_area_vec = np.vectorize(bd_area)
|
||
cal_bd_np = bd_area_vec(
|
||
i_curt_samples, u_ph, dgc, h_gav, h_cav
|
||
) * thunder_density(i_curt_samples)
|
||
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
|
||
# for i_curt in i_curt_samples[:-1]:
|
||
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||
# cal_thunder_density_first = thunder_density(i_curt)
|
||
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
||
# calculus += (
|
||
# (
|
||
# cal_bd_first * cal_thunder_density_first
|
||
# + cal_bd_second * cal_thunder_density_second
|
||
# )
|
||
# / 2
|
||
# * d_curt
|
||
# )
|
||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||
# abc=123
|
||
# pass
|
||
n_sf = (
|
||
2 * ng / 10 * calculus
|
||
) # 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||
avr_n_sf += n_sf / voltage_n
|
||
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||
print(f"跳闸率是{avr_n_sf:.6}")
|
||
|
||
|
||
def speed():
|
||
a = 0
|
||
for bar in range(100000000):
|
||
a += bar
|
||
|
||
|
||
if __name__ == "__main__":
|
||
run_time = timeit.timeit("egm()", globals=globals(), number=1)
|
||
print(f"运行时间:{run_time:.2f}s")
|
||
print("Finished.")
|