egm/core.py

282 lines
9.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import ezdxf
import numpy as np
gCAD = None
gMSP = None
gCount = 1
class Draw:
def __init__(self):
self._doc = ezdxf.new(dxfversion="R2010")
self._doc.layers.add("EGM", color=2)
global gCAD
gCAD = self
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc, color):
doc = self._doc
msp = doc.modelspace()
global gMSP
gMSP = msp
rs = rs_fun(i_curt)
rc = rc_fun(i_curt, u_ph)
rg = rg_fun(i_curt, h_cav)
msp.add_circle((0, h_gav), rs, dxfattribs={"color": color})
msp.add_line((0, 0), (0, h_gav)) # 地线
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color})
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
msp.add_line((0, h_gav), (dgc, h_cav))
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color})
# 计算圆交点
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
# msp.add_line((0, h_gav), circle_intersection) # 地线
# msp.add_line((dgc, h_cav), circle_intersection) # 导线
# circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
# msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
def save(self):
doc = self._doc
doc.saveas("egm.dxf")
# 圆交点
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
# 用牛顿法求解
x = rc # 初始值
y = rc # 初始值
for bar in range(0, 10):
A = [[-2 * x, -2 * (y - hgav)], [-2 * (x - dgc), -2 * (y - hcav)]]
b = [
x ** 2 + (y - hgav) ** 2 - rs ** 2,
(x - dgc) ** 2 + (y - hcav) ** 2 - rc ** 2,
]
X_set = np.linalg.solve(A, b)
x += X_set[0]
y += X_set[1]
if np.all(np.abs(X_set) < 1e-5):
return [x, y]
return []
# 圆与地面线交点
def solve_circle_line_intersection(radius, rg, center_x, center_y):
distance = distance_point_line(center_x, center_y, 0, rg, 0) # 捕雷线到暴露圆中点的距离
if distance > radius:
return []
else:
r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
return [r, rg]
def min_i(string_len, u_ph):
u_50 = 530 * string_len + 35
z_0 = 300 # 雷电波阻抗
z_c = 251 # 导线波阻抗
r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c)
return r
def thunder_density(i): # l雷电流幅值密度函数
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44)
return r
def angel_density(angle): # 入射角密度函数 angle单位是弧度
r = 0.75 * (math.cos(angle - math.pi / 2) ** 3)
return r
def rs_fun(i):
r = 10 * (i ** 0.65)
return r
def rc_fun(i, u_ph):
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125)
# r=14.7*(i**0.42)
return r
def rg_fun(i_curt, h_cav):
if h_cav < 40:
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65)
else:
rg = 5.5 * (i_curt ** 0.65)
return rg
def intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
rs = rs_fun(i_curt)
rc = rc_fun(i_curt, u_ph)
rg = rg_fun(i_curt, h_cav)
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) # 两圆的交点
circle_line_intersection = solve_circle_line_intersection(
rc, rg, dgc, h_cav
) # 暴露圆和补雷线的交点
np_circle_intersection = np.array(circle_intersection)
# TODO to be removed
if not circle_intersection:
abc = 123
theta2_line = np_circle_intersection - np.array([dgc, h_cav])
theta2 = math.atan(theta2_line[1] / theta2_line[0])
np_circle_line_intersection = np.array(circle_line_intersection)
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav])
theta1 = math.atan(theta1_line[1] / theta1_line[0])
return np.array([theta1, theta2])
def distance_point_line(point_x, point_y, line_x, line_y, k):
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k ** 2 + 1) ** 0.5)
return d
def func_calculus_pw(theta, max_w):
w_fineness = 0.01
r_pw = 0
# TODO to be removed
if int(max_w / w_fineness) < 0:
abc = 123
pass
w_samples, d_w = np.linspace(0, max_w, int(max_w / w_fineness), retstep=True)
for cal_w in w_samples[:-1]:
r_pw += (
(
abs(angel_density(cal_w)) * math.sin(theta - (cal_w - math.pi / 2))
+ abs(angel_density(cal_w + d_w))
* math.sin(theta - (cal_w + d_w - math.pi / 2))
)
/ 2
) * d_w
return r_pw
def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
max_w = 0
# 求暴露弧上一点的切线
line_x = math.cos(theta) * rc + dgc
line_y = math.sin(theta) * rc + h_cav
k = math.tan(theta + math.pi / 2) # 入射角
# 求保护弧到直线的距离,判断是否相交
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
if d_to_rs < rs: # 相交
# 要用过直线上一点到暴露弧的切线
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
# TODO to be removed
if not new_k:
a = 12
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
if new_k >= 0:
max_w = math.atan(new_k) # 用于保护弧相切的角度
elif new_k < 0:
max_w = math.atan(new_k) + math.pi
# TODO to be removed
if max_w < 0:
abc = 123
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
# TODO to be removed
global gCount
gCount += 1
if gCount % 100 == 0:
# gMSP.add_circle((0, h_gav), rs)
# gMSP.add_circle((dgc, h_cav), rc)
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
# gMSP.add_line(
# (-500, new_k * (-500 - line_x) + line_y),
# (500, new_k * (500 - line_x) + line_y),
# )
# gCAD.save()
pass
else:
max_w = theta + math.pi / 2 # 入射角
# TODO to be removed
if gCount % 200 == 0:
# # intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
# gMSP.add_circle((0, h_gav), rs)
# gMSP.add_circle((dgc, h_cav), rc)
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
# gMSP.add_line(
# (-500, k * (-500 - line_x) + line_y),
# (500, k * (500 - line_x) + line_y),
# )
# gCAD.save()
pass
r = rc / math.cos(theta) * func_calculus_pw(theta, max_w)
return r
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph) # θ角度
theta_fineness = 0.01
rc = rc_fun(i_curt, u_ph)
rs = rs_fun(i_curt)
rg = rg_fun(i_curt, h_cav)
r_bd = 0
theta_sample, d_theta = np.linspace(
theta1, theta2, int((theta2 - theta1) / theta_fineness), retstep=True
)
for calculus_theta in theta_sample[:-1]:
r_bd += (
(
calculus_bd(calculus_theta, rc, rs, rg, dgc, h_cav, h_gav)
+ calculus_bd(calculus_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
)
/ 2
* d_theta
)
return r_bd
def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
# 直线方程为 y-y0=k(x-x0)x0和y0为经过直线的任意一点
# 牛顿法求解k
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
k_candidate = [-100, 100]
if abs(center_y - line_y) < 1 and abs(line_x - center_x - radius) < 1:
# k不存在
k_candidate = [99999999, 99999999]
else:
for ind, k_cdi in enumerate(list(k_candidate)):
k = k_candidate[ind]
k_candidate[ind] = None
for bar in range(0, 30):
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
radius ** 2
) * (k ** 2 + 1)
d_fk = (
2
* (k * center_x - center_y - k * line_x + line_y)
* (center_x - line_x)
- 2 * (radius ** 2) * k
)
if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5:
# k不存在角度为90°k取一个很大的正数
k_candidate[ind] = 99999999999999
break
d_k = -fk / d_fk
k += d_k
if abs(d_k) < 1e-3:
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
if abs(dd - radius) < 1:
k_candidate[ind] = k
break
# 把k转化成相应的角度从x开始逆时针为正
k_angle = []
for kk in k_candidate:
if kk is None:
abc = 123
# tangent_line_k(line_x, line_y, center_x, center_y, radius)
pass
if kk >= 0:
k_angle.append(math.atan(kk))
if kk < 0:
k_angle.append(math.pi + math.atan(kk))
# 返回相对x轴最大的角度k
return np.array(k_candidate)[np.max(k_angle) == k_angle].tolist()[-1]
def func_ng(td): # 地闪密度
return 0.023 * (td ** 1.3)