import math import ezdxf import numpy as np # 圆交点 def solve_circle_intersection(rs, rc, hgav, hcav, dgc): # x = Symbol('x', real=True) # y = Symbol('y', real=True) # equ = [ # x ** 2 + (y - hgav) ** 2 - rs ** 2, # (x - dgc) ** 2 + (y - hcav) ** 2 - rc ** 2, # ] # 用牛顿法求解 x = 300 y = 300 for bar in range(0, 10): A = [[-2 * x, -2 * (y - hgav)], [-2 * (x - dgc), -2 * (y - hcav)]] b = [ x ** 2 + (y - hgav) ** 2 - rs ** 2, (x - dgc) ** 2 + (y - hcav) ** 2 - rc ** 2, ] X_set = np.linalg.solve(A, b) x += X_set[0] y += X_set[1] if np.all(np.abs(X_set) < 1e-5): return [x, y] return [] # list_set = list(X_set) # solve_set = nonlinsolve(equ, [x, y]) # print(ask(Q.real(solve_set))) # list_set = list(solve_set) # pprint(list_set) # if not np.all(np.isreal(list_set)): # return [] # for value in list_set: # if value[0] > 0 and value[1] > 1: # return value # return [] # 圆与地面线交点 def solve_circle_line_intersection(rc, rg, hcav, dgc): r = (rc ** 2 - (rg - hcav) ** 2) ** 0.5 + dgc return [r, rg] def draw(rs, rc, rg, h_gav, h_cav, dgc): doc = ezdxf.new(dxfversion="R2010") doc.layers.add("EGM", color=2) msp = doc.modelspace() msp.add_circle((0, h_gav), rs) msp.add_line((0, 0), (0, h_gav)) # 地线 msp.add_circle((dgc, h_cav), rc) msp.add_line((dgc, 0), (dgc, h_cav)) # 导线 msp.add_line((0, h_gav), (dgc, h_cav)) msp.add_line((0, rg), (200, rg)) # 计算圆交点 circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) msp.add_line((0, h_gav), circle_intersection) # 地线 msp.add_line((dgc, h_cav), circle_intersection) # 导线 circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc) msp.add_line((0, 0), circle_line_section) # 导线和圆的交点 doc.saveas("egm.dxf") solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) def min_i(string_len, u_ph): u_50 = 530 * string_len + 35 z_0 = 300 # 雷电波阻抗 z_c = 251 # 导线波阻抗 r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c) return r def thunder_density(i): # l雷电流幅值密度函数 r = -10 ** (-i / 44) * math.log(10) * (-1 / 44) return r def angel_density(angle): # 入射角密度函数 angle单位是弧度 r = 0.75 * (math.cos(angle) ** 3) return r def rs_fun(i): r = 10 * (i ** 0.65) return r def rc_fun(i, u_ph): r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125) return r def rg_fun(i, h_cav): if h_cav < 40: rg = (3.6 + 1.7 ** math.log(43 - h_cav)) ** 0.65 else: rg = 5.5 * (i ** 0.65) return rg def intersection_angel(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度 rs = rs_fun(i_curt) rc = rc_fun(i_curt, u_ph) rg = rg_fun(i_curt, h_cav) circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) circle_line_intersection = solve_circle_line_intersection(rc, rg, h_cav, dgc) np_circle_intersection = np.array(circle_intersection) theta2_line = np_circle_intersection - np.array([dgc, h_cav]) theta2 = math.atan(theta2_line[1] / theta2_line[0]) np_circle_line_intersection = np.array(circle_line_intersection) theta1_line = np_circle_line_intersection - np.array([dgc, h_cav]) theta1 = math.atan(theta1_line[1] / theta1_line[0]) return np.array([theta1, theta2]) def bd_area(i_curt, u_ph, theta1, theta2): # 暴露弧的投影面积 rc = rc_fun(i_curt, u_ph) # 暂时不考虑雷电入射角的影响 r = (math.cos(theta1) - math.cos(theta2)) * rc return r # r1=rc*(-math.cos(thyta2)+math.cos(thyta1)) # 入射角密度函数积分 # arrival_angle_fineness=0.0001 # for calculus_arv_angle in np.linspace() def egm(): u_ph = 750 / 1.732 # 运行相电压 h_cav = 60 # 导线对地平均高 h_gav = h_cav + 9.5 + 7.2 dgc = 2 # 迭代法计算最大电流 i_max = 0 _min_i = 30 # 尝试的最小电流 _max_i = 80 # 尝试的最大电流 for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.01)): # 雷电流 print(f"尝试计算电流为{i_bar:.2f}") rs = rs_fun(i_bar) if not np.isreal(rs): continue rc = rc_fun(i_bar, u_ph) if not np.isreal(rc): continue rg = rg_fun(i_bar, h_cav) if not np.isreal(rg): continue circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) if not circle_intersection: # if circle_intersection is [] continue circle_line_intersection = solve_circle_line_intersection(rc, rg, h_cav, dgc) min_distance_intersection = ( np.sum( (np.array(circle_intersection) - np.array(circle_line_intersection)) ** 2 ) ** 0.5 ) # 计算两圆交点和地面直线交点的最小距离 if min_distance_intersection < 0.01: i_max = i_bar draw(rs, rc, rg, h_gav, h_cav, dgc) break print(f"最大电流为{i_max:.2f}") i_min = min_i(6.78, 750 / 1.732) print(f"最小电流为{i_min:.2f}") # 开始积分 curt_fineness = 0.1 # 电流积分细度 curt_segment_n = int((i_max - i_min) / curt_fineness) d_curt = (i_max - i_min) / curt_segment_n calculus = 0 for curt in np.linspace(i_min, i_max, curt_segment_n): cal_thyta_first = intersection_angel(dgc, h_gav, h_cav, curt, u_ph) cal_bd_first = bd_area(curt, u_ph, cal_thyta_first[0], cal_thyta_first[1]) cal_thyta_second = intersection_angel(dgc, h_gav, h_cav, curt + d_curt, u_ph) cal_bd_second = bd_area( curt + d_curt, u_ph, cal_thyta_second[0], cal_thyta_second[1] ) cal_thunder_density_first = thunder_density(curt) cal_thunder_density_second = thunder_density(curt + d_curt) calculus += ( ( cal_bd_first * cal_thunder_density_first + cal_bd_second * cal_thunder_density_second ) / 2 * d_curt ) n_sf=2*2.7/10*calculus print(f'跳闸率是{n_sf}') # draw(rs, rc, rg, h_gav, h_cav, dgc) if __name__ == "__main__": thunder_density(2) egm() print("Finished.")