from core import * import timeit def egm(): # TODO to be removed cccCount = 0 avr_n_sf = 0 # 考虑电压的影响 voltage_n = 3 # 工作电压分成多少份来计算 ng = func_ng(20) h_whole = 140 # 杆塔全高 insulator_c_len = 6.8 # 串子绝缘长度 string_c_len = 9.2 string_g_len = 0.5 dgc = -0.9 # 导地线水平距离 vertical_dgc = 2.7 # 导地线挂点垂直距离 h_g_avr_sag = 11.67 * 2 / 3 h_c_avr_sag = (14.43 - 11.67) * 2 / 3 h_gav = h_whole - string_g_len - h_g_avr_sag # 地线对地平均高 h_cav = h_gav - string_c_len - vertical_dgc - h_c_avr_sag # 导线对地平均高 shield_angle = math.atan(dgc / (vertical_dgc + string_c_len)) * 180 / math.pi print(f"保护角{shield_angle:.3f}°") for u_bar in range(voltage_n): u_ph = ( math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732 ) # 运行相电压 # 迭代法计算最大电流 i_max = 0 i_min = min_i(insulator_c_len, u_ph / 1.732) _min_i = i_min # 尝试的最小电流 _max_i = 200 # 尝试的最大电流 # TODO remove it cad = Draw() cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2) for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流 # print(f"尝试计算电流为{i_bar:.2f}") rs = rs_fun(i_bar) rc = rc_fun(i_bar, u_ph) rg = rg_fun(i_bar, h_cav) ####### cccCount += 1 if cccCount % 30 == 0: import core core.gMSP.add_circle((0, h_gav), rs) core.gMSP.add_circle( (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4} ) core.gMSP.add_circle((dgc, h_cav), rc) ####### circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) if not circle_intersection: # if circle_intersection is [] # print("保护弧和暴露弧无交点,检查设置参数。程序退出。") continue circle_rc_line_intersection = solve_circle_line_intersection( rc, rg, dgc, h_cav ) if not circle_rc_line_intersection: continue min_distance_intersection = ( np.sum( ( np.array(circle_intersection) - np.array(circle_rc_line_intersection) ) ** 2 ) ** 0.5 ) # 计算两圆交点和地面直线交点的最小距离 i_max = i_bar if min_distance_intersection < 0.1: break if circle_intersection[1] < circle_rc_line_intersection[1]: circle_rs_line_intersection = solve_circle_line_intersection( rs, rg, 0, h_gav ) # 判断与保护弧的交点是否在暴露弧外面 distance = ( np.sum( (np.array(circle_rs_line_intersection) - np.array([dgc, h_cav])) ** 2 ) ** 0.5 ) if distance > rc: print("暴露弧已经完全被屏蔽") break cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2) cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6) cad.save() # 判断是否导线已经被完全保护 if abs(i_max - _max_i) < 1e-5: print("无法找到最大电流,可能是杆塔较高。") print(f"最大电流设置为自然界最大电流{i_max}kA") print(f"最大电流为{i_max:.2f}") print(f"最小电流为{i_min:.2f}") curt_fineness = 0.1 # 电流积分细度 if i_min > i_max or abs(i_min - i_max) < curt_fineness: print("最大电流小于最小电流,没有暴露弧,程序结束。") return # 开始积分 curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份 calculus = 0 i_curt_samples, d_curt = np.linspace( i_min, i_max, curt_segment_n + 1, retstep=True ) for i_curt in i_curt_samples[:-1]: cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav) cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav) cal_thunder_density_first = thunder_density(i_curt) cal_thunder_density_second = thunder_density(i_curt + d_curt) calculus += ( ( cal_bd_first * cal_thunder_density_first + cal_bd_second * cal_thunder_density_second ) / 2 * d_curt ) n_sf = ( 2 * ng / 10 * calculus ) # 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13 avr_n_sf += n_sf / voltage_n print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}") print(f"跳闸率是{avr_n_sf:.6}") def speed(): a = 0 for bar in range(100000000): a += bar if __name__ == "__main__": run_time = timeit.timeit("egm()", globals=globals(), number=1) print(f"运行时间:{run_time:.2f}s") print("Finished.")