import math import os.path import sys import time import tomli from loguru import logger from core import * import timeit from animation import Animation # 打印参数 def parameter_display(para_dis: Parameter): logger.info(f"额定电压 kV {para_dis.rated_voltage}") logger.info(f"导线弧垂 m {para_dis.h_c_sag}") logger.info(f"地线弧垂 m {para_dis.h_g_sag}") logger.info(f"全塔高 m {para_dis.h_arm[0]}") logger.info(f"串绝缘距离 m {para_dis.insulator_c_len}") logger.info(f"导线串长 m {para_dis.string_c_len}") logger.info(f"地线串长 m {para_dis.string_g_len}") logger.info(f"挂点垂直坐标 m {para_dis.h_arm}") logger.info(f"挂点水平坐标 m {para_dis.gc_x}") logger.info(f"地面倾角 ° {[an * 180 / math.pi for an in para_dis.ground_angels]}") logger.info(f"海拔高度 m {para_dis.altitude}") if para_dis.ng > 0: logger.info("不采用雷暴日计算地闪密度和雷电流密度") logger.info(f"地闪密度 次/(每平方公里·每年) {para_dis.ng}") logger.info(f"概率密度曲线系数a {para_dis.Ip_a}") logger.info(f"概率密度曲线系数b {para_dis.Ip_b}") pass else: logger.info(f"雷暴日 d {para_dis.td}") def read_parameter(toml_file_path): with open(toml_file_path, "rb") as toml_fs: toml_dict = tomli.load(toml_fs) toml_parameter = toml_dict["parameter"] para.h_g_sag = toml_parameter["h_g_sag"] # 地线弧垂 para.h_c_sag = toml_parameter["h_c_sag"] # 导线弧垂 # para.h_whole = toml_parameter["h_whole"] # 杆塔全高 para.td = toml_parameter["td"] # 雷暴日 para.insulator_c_len = toml_parameter["insulator_c_len"] # 串子绝缘长度 para.string_c_len = toml_parameter["string_c_len"] para.string_g_len = toml_parameter["string_g_len"] para.gc_x = toml_parameter["gc_x"] # 导、地线水平坐标 para.ground_angels = [ angel / 180 * math.pi for angel in toml_parameter["ground_angels"] ] # 地面倾角,向下为正 para.h_arm = toml_parameter["h_arm"] para.altitude = toml_parameter["altitude"] para.rated_voltage = toml_parameter["rated_voltage"] toml_advance = toml_dict["advance"] para.ng = toml_advance["ng"] # 地闪密度 para.Ip_a = toml_advance["Ip_a"] # 概率密度曲线系数a para.Ip_b = toml_advance["Ip_b"] # 概率密度曲线系数b toml_optional = toml_dict["optional"] para.voltage_n = toml_optional["voltage_n"] # 工作电压分成多少份来计算 para.max_i = toml_optional["max_i"] def egm(): if len(sys.argv) < 2: toml_file_path = r"内自500kV-ZCK上相.toml" else: toml_file_path = sys.argv[1] if not os.path.exists(toml_file_path): logger.info(f"无法找到数据文件{toml_file_path},程序退出。") sys.exit(0) logger.info(f"读取文件{toml_file_path}") read_parameter(toml_file_path) ######################################################### # 以上是需要设置的参数 parameter_display(para) h_whole = para.h_arm[0] # 挂点高 string_g_len = para.string_g_len string_c_len = para.string_c_len h_g_sag = para.h_g_sag h_c_sag = para.h_c_sag gc_x = para.gc_x h_arm = para.h_arm gc_y = [ h_whole - string_g_len - h_g_sag * 2 / 3, # 地线对地平均高 ] if len(h_arm) > 1: for hoo in h_arm[1:]: gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3) # 导线平均高 if len(gc_y) > 2: # 双回路 phase_n = 3 # 边相导线数量 else: phase_n = 1 # 地闪密度 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13 td = para.td ng = func_ng(td) avr_n_sf = 0 # 考虑电压的影响计算的跳闸率 ground_angels = para.ground_angels # 初始化动画 animate = Animation() animate.disable(False) # animate.show() for ground_angel in ground_angels: logger.info(f"地面倾角{ground_angel/math.pi*180:.3f}°") rg_type = None rg_x = None rg_y = None voltage_n = para.voltage_n n_sf_phases = np.zeros((phase_n, voltage_n)) # 存储每一相的跳闸率 if np.any(np.array(gc_y) < 0): logger.info("导线可能掉地面下了,程序退出。") return 0 for phase_conductor_foo in range(phase_n): exposed_curve_shielded = False rs_x = gc_x[phase_conductor_foo] rs_y = gc_y[phase_conductor_foo] rc_x = gc_x[phase_conductor_foo + 1] rc_y = gc_y[phase_conductor_foo + 1] if phase_n == 1: rg_type = "g" if phase_n > 1: # 多回路 if phase_conductor_foo < 2: rg_type = "c" # 捕捉弧由下面一相导线的击距代替 rg_x = gc_x[phase_conductor_foo + 2] rg_y = gc_y[phase_conductor_foo + 2] else: rg_type = "g" # TODO 保护角公式可能有问题,后面改 shield_angle_at_avg_height = ( math.atan( (rc_x - rs_x) / ( (h_arm[0] - string_g_len - h_arm[phase_conductor_foo + 1]) + string_c_len ) ) * 180 / math.pi ) # 挂点处保护角 logger.info(f"挂点处保护角{shield_angle_at_avg_height:.3f}°") logger.debug(f"最低相防护标识{rg_type}") rated_voltage = para.rated_voltage for u_bar in range(voltage_n): # 计算不同工作电压下的跳闸率 # TODO 需要区分交、直流 # u_ph = ( # math.sqrt(2) # * rated_voltage # * math.cos(2 * math.pi / voltage_n * u_bar) # / 1.732 # ) # 运行相电压 u_ph = rated_voltage / 1.732 logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV") # 迭代法计算最大电流 i_max = 0 insulator_c_len = para.insulator_c_len # i_min = min_i(insulator_c_len, u_ph / 1.732) # TODO 需要考虑交、直流 i_min = min_i(insulator_c_len, u_ph) _min_i = i_min # 尝试的最小电流 _max_i = para.max_i # 尝试的最大电流 # cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2) for i_bar in np.linspace( _min_i, _max_i, int((_max_i - _min_i) / 1) ): # 雷电流 logger.info(f"尝试计算电流为{i_bar:.2f}") rs = rs_fun(i_bar) animate.add_rs(rs, rs_x, rs_y) rc = rc_fun(i_bar, u_ph) animate.add_rc(rc, rc_x, rc_y) rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type) rg_line_func = None if rg_type == "g": rg_line_func = rg_line_function_factory(rg, ground_angel) animate.add_rg_line(rg_line_func) rs_rc_circle_intersection = solve_circle_intersection( rs, rc, rs_x, rs_y, rc_x, rc_y ) i_max = i_bar if not rs_rc_circle_intersection: # if circle_intersection is [] logger.debug("保护弧和暴露弧无交点,检查设置参数。") continue circle_rc_or_rg_line_intersection = None if rg_type == "g": circle_rc_or_rg_line_intersection = ( solve_circle_line_intersection(rc, rc_x, rc_y, rg_line_func) ) elif rg_type == "c": circle_rc_or_rg_line_intersection = solve_circle_intersection( rg, rc, rg_x, rg_y, rc_x, rc_y ) if not circle_rc_or_rg_line_intersection: # 暴露弧和捕捉弧无交点 if rg_type == "g": if rg_line_func(rc_x) > rc_y: i_min = i_bar # 用于后面判断最小和最大电流是否相等,相等意味着暴露弧一直被屏蔽 logger.info( f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}" ) else: logger.info("暴露弧和地面捕捉弧无交点,检查设置参数。") continue else: logger.info( "上面的导地线无法保护下面的导地线,检查设置参数。" ) continue animate.add_expose_area( rc_x, rc_y, *rs_rc_circle_intersection, *circle_rc_or_rg_line_intersection, ) cad = Draw() cad.draw( i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, ground_angel, 2, ) # 最小电流时 cad.draw( i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, ground_angel, 6, ) # 最大电流时 cad.save_as(f"egm{phase_conductor_foo + 1}.dxf") min_distance_intersection = ( np.sum( ( np.array(rs_rc_circle_intersection) - np.array(circle_rc_or_rg_line_intersection) ) ** 2 ) ** 0.5 ) # 计算两圆交点和地面直线交点的最小距离 if min_distance_intersection < 0.1: break # 已经找到了最大电流 # 判断是否以完全被保护 if ( rs_rc_circle_intersection[1] < circle_rc_or_rg_line_intersection[1] ): circle_rs_line_or_rg_intersection = None if rg_type == "g": circle_rs_line_or_rg_intersection = ( solve_circle_line_intersection( rs, rs_x, rs_y, rg_line_func ) # 保护弧和捕雷弧的交点 ) if rg_type == "c": circle_rs_line_or_rg_intersection = ( solve_circle_intersection( rs, rg, rs_x, rs_y, rg_x, rg_y ) ) # 判断与保护弧的交点是否在暴露弧外面 distance = ( np.sum( ( np.array(circle_rs_line_or_rg_intersection) - np.array([rc_x, rc_y]) ) ** 2 ) ** 0.5 ) if distance > rc: logger.info(f"电流为{i_bar}kV时,暴露弧已经完全被屏蔽") exposed_curve_shielded = True break animate.pause() # 判断是否导线已经被完全保护 if abs(i_max - _max_i) < 1e-5: logger.info("无法找到最大电流,可能是杆塔较高。") logger.info(f"最大电流设置为自然界最大电流{i_max}kA") logger.info(f"最大电流为{i_max:.2f}") logger.info(f"最小电流为{i_min:.2f}") # if exposed_curve_shielded: # logger.info("暴露弧已经完全被屏蔽,不会跳闸。") # continue curt_fineness = 0.1 # 电流积分细度 if i_min > i_max or abs(i_min - i_max) < curt_fineness: logger.info("最大电流小于等于最小电流,没有暴露弧。") continue # 开始积分 curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份 i_curt_samples, d_curt = np.linspace( i_min, i_max, curt_segment_n + 1, retstep=True ) bd_area_vec = np.vectorize(bd_area) td = para.td ip_a = para.Ip_a ip_b = para.Ip_b bd_area_vec_result = bd_area_vec( i_curt_samples, u_ph, rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, ground_angel, rg_type, ) thunder_density_result = thunder_density( i_curt_samples, td, ip_a, ip_b ) # 雷电流幅值密度函数 cal_bd_np = bd_area_vec_result * thunder_density_result calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt # for i_curt in i_curt_samples[:-1]: # cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav) # cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav) # cal_thunder_density_first = thunder_density(i_curt) # cal_thunder_density_second = thunder_density(i_curt + d_curt) # calculus += ( # ( # cal_bd_first * cal_thunder_density_first # + cal_bd_second * cal_thunder_density_second # ) # / 2 # * d_curt # ) # if abs(calculus-0.05812740052770032)<1e-5: # abc=123 # pass rated_voltage = para.rated_voltage n_sf = ( 2 * ng / 10 * calculus * arc_possibility(rated_voltage, insulator_c_len) ) avr_n_sf += n_sf / voltage_n n_sf_phases[phase_conductor_foo][u_bar] = n_sf logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.16f}次/(100km·a)") logger.info(f"线路跳闸率是{avr_n_sf:.16f}次/(100km·a)") logger.info( f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=16)}次/(100km·a)" ) def speed(): a = 0 for bar in range(100000000): a += bar if __name__ == "__main__": logger.remove() logger.add(sys.stderr, level="DEBUG") egm() # run_time = timeit.timeit("egm()", globals=globals(), number=1) # logger.info(f"运行时间:{run_time:.2f}s") # input('enter any key to exit.') logger.info("Finished.")