Compare commits
2 Commits
5a75df4542
...
392eeb0168
| Author | SHA1 | Date |
|---|---|---|
|
|
392eeb0168 | |
|
|
dd44de030e |
173
core.py
173
core.py
|
|
@ -15,26 +15,44 @@ class Draw:
|
|||
global gCAD
|
||||
gCAD = self
|
||||
|
||||
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc, color):
|
||||
def draw(self, i_curt, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, color):
|
||||
doc = self._doc
|
||||
msp = doc.modelspace()
|
||||
global gMSP
|
||||
gMSP = msp
|
||||
rs = rs_fun(i_curt)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
rg = rg_fun(i_curt, h_cav)
|
||||
msp.add_circle((0, h_gav), rs, dxfattribs={"color": color})
|
||||
msp.add_line((0, 0), (0, h_gav)) # 地线
|
||||
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color})
|
||||
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
|
||||
msp.add_line((0, h_gav), (dgc, h_cav))
|
||||
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color})
|
||||
rg = rg_fun(i_curt, rc_y, u_ph, typ=rg_type)
|
||||
msp.add_circle((rs_x, rs_y), rs, dxfattribs={"color": color})
|
||||
msp.add_line((0, 0), (rs_x, rs_y)) # 地线
|
||||
msp.add_circle((rc_x, rc_y), rc, dxfattribs={"color": color + 2})
|
||||
msp.add_line((rc_x, 0), (rc_x, rc_y)) # 导线
|
||||
msp.add_line((rs_x, rs_y), (rc_x, rc_y))
|
||||
# 角度线
|
||||
circle_intersection = solve_circle_intersection(rs, rc, rs_x, rs_y, rc_x, rc_y)
|
||||
msp.add_line(
|
||||
(rc_x, rc_y), circle_intersection, dxfattribs={"color": color}
|
||||
) # 地线
|
||||
if rg_type == "g":
|
||||
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color})
|
||||
circle_line_section = solve_circle_line_intersection(rc, rg, rc_x, rc_y)
|
||||
if not circle_line_section:
|
||||
pass
|
||||
else:
|
||||
msp.add_line(
|
||||
(rc_x, rc_y), circle_line_section, dxfattribs={"color": color}
|
||||
) # 导线和圆的交点
|
||||
if rg_type == "c":
|
||||
msp.add_circle((rg_x, rg_y), rg, dxfattribs={"color": color})
|
||||
rg_rc_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
)
|
||||
msp.add_line(
|
||||
(rc_x, rc_y), rg_rc_intersection, dxfattribs={"color": color}
|
||||
) # 圆和圆的交点
|
||||
# 计算圆交点
|
||||
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
# msp.add_line((0, h_gav), circle_intersection) # 地线
|
||||
|
||||
# msp.add_line((dgc, h_cav), circle_intersection) # 导线
|
||||
# circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
||||
# msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
|
||||
|
||||
def save(self):
|
||||
doc = self._doc
|
||||
|
|
@ -42,15 +60,26 @@ class Draw:
|
|||
|
||||
|
||||
# 圆交点
|
||||
def solve_circle_intersection(rs, rc, h_gav, h_cav, dgc):
|
||||
def solve_circle_intersection(
|
||||
radius1,
|
||||
radius2,
|
||||
center_x1,
|
||||
center_y1,
|
||||
center_x2,
|
||||
center_y2,
|
||||
):
|
||||
# 用牛顿法求解
|
||||
x = rc # 初始值
|
||||
y = rc # 初始值
|
||||
x = radius2 # 初始值
|
||||
y = radius2 # 初始值
|
||||
# TODO 考虑出现2个解的情况
|
||||
for bar in range(0, 10):
|
||||
A = [[-2 * x, -2 * (y - h_gav)], [-2 * (x - dgc), -2 * (y - h_cav)]]
|
||||
A = [
|
||||
[-2 * (x - center_x1), -2 * (y - center_y1)],
|
||||
[-2 * (x - center_x2), -2 * (y - center_y2)],
|
||||
]
|
||||
b = [
|
||||
x ** 2 + (y - h_gav) ** 2 - rs ** 2,
|
||||
(x - dgc) ** 2 + (y - h_cav) ** 2 - rc ** 2,
|
||||
(x - center_x1) ** 2 + (y - center_y1) ** 2 - radius1 ** 2,
|
||||
(x - center_x2) ** 2 + (y - center_y2) ** 2 - radius2 ** 2,
|
||||
]
|
||||
X_set = np.linalg.solve(A, b)
|
||||
x += X_set[0]
|
||||
|
|
@ -84,7 +113,7 @@ def thunder_density(i): # l雷电流幅值密度函数
|
|||
|
||||
|
||||
def angel_density(angle): # 入射角密度函数 angle单位是弧度
|
||||
r = 0.75 * (np.cos(angle - math.pi / 2) ** 3)
|
||||
r = 0.75 * abs((np.cos(angle - math.pi / 2) ** 3))
|
||||
return r
|
||||
|
||||
|
||||
|
|
@ -95,35 +124,62 @@ def rs_fun(i):
|
|||
|
||||
def rc_fun(i, u_ph):
|
||||
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125)
|
||||
# r=14.7*(i**0.42)
|
||||
return r
|
||||
|
||||
|
||||
def rg_fun(i_curt, h_cav):
|
||||
if h_cav < 40:
|
||||
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65)
|
||||
else:
|
||||
rg = 5.5 * (i_curt ** 0.65)
|
||||
# typ 如果是g,代表捕雷线公式,c代表暴露弧公式
|
||||
def rg_fun(i_curt, h_cav, u_ph, typ="g"):
|
||||
rg = None
|
||||
if typ == "g":
|
||||
if h_cav < 40:
|
||||
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65)
|
||||
else:
|
||||
rg = 5.5 * (i_curt ** 0.65)
|
||||
elif typ == "c": # 此时返回的是圆半径
|
||||
rg = rc_fun(i_curt, u_ph)
|
||||
return rg
|
||||
|
||||
|
||||
def intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
|
||||
def intersection_angle(
|
||||
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_surface, rg_type
|
||||
): # 暴露弧的角度
|
||||
rs = rs_fun(i_curt)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
rg = rg_fun(i_curt, h_cav)
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) # 两圆的交点
|
||||
circle_line_intersection = solve_circle_line_intersection(
|
||||
rc, rg, dgc, h_cav
|
||||
) # 暴露圆和补雷线的交点
|
||||
rg = rg_fun(i_curt, rc_y, u_ph, typ=rg_type)
|
||||
circle_intersection = solve_circle_intersection(
|
||||
rs, rc, rs_x, rs_y, rc_x, rc_y
|
||||
) # 两圆的交点
|
||||
circle_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_line_or_rg_intersection = solve_circle_line_intersection(
|
||||
rc, rg, rc_x, rc_y
|
||||
) # 暴露圆和补雷线的交点
|
||||
if rg_type == "c":
|
||||
circle_line_or_rg_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
) # 两圆的交点
|
||||
(
|
||||
circle_line_or_rg_intersection_x,
|
||||
circle_line_or_rg_intersection_y,
|
||||
) = circle_line_or_rg_intersection
|
||||
if (
|
||||
ground_surface(circle_line_or_rg_intersection_x)
|
||||
> circle_line_or_rg_intersection_y
|
||||
): # 交点在地面线以下,就可以不积分
|
||||
# 找到暴露弧和地面线的交点
|
||||
circle_line_or_rg_intersection = circle_ground_surface_intersection(
|
||||
rc, rc_x, rc_y, ground_surface
|
||||
)
|
||||
np_circle_intersection = np.array(circle_intersection)
|
||||
theta2_line = np_circle_intersection - np.array([dgc, h_cav])
|
||||
theta2_line = np_circle_intersection - np.array([rc_x, rc_y])
|
||||
theta2 = math.atan(theta2_line[1] / theta2_line[0])
|
||||
np_circle_line_intersection = np.array(circle_line_intersection)
|
||||
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav])
|
||||
np_circle_line_or_rg_intersection = np.array(circle_line_or_rg_intersection)
|
||||
theta1_line = np_circle_line_or_rg_intersection - np.array([rc_x, rc_y])
|
||||
theta1 = math.atan(theta1_line[1] / theta1_line[0])
|
||||
return np.array([theta1, theta2])
|
||||
|
||||
|
||||
# 点到直线的距离
|
||||
def distance_point_line(point_x, point_y, line_x, line_y, k) -> float:
|
||||
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k ** 2 + 1) ** 0.5)
|
||||
return d
|
||||
|
|
@ -137,17 +193,17 @@ def func_calculus_pw(theta, max_w):
|
|||
return r_pw
|
||||
|
||||
|
||||
def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
|
||||
def calculus_bd(theta, rc, rs, rg, rc_x, rc_y, rs_x, rs_y): # 对θ进行积分
|
||||
max_w = 0
|
||||
# 求暴露弧上一点的切线
|
||||
line_x = math.cos(theta) * rc + dgc
|
||||
line_y = math.sin(theta) * rc + h_cav
|
||||
line_x = math.cos(theta) * rc + rc_x
|
||||
line_y = math.sin(theta) * rc + rc_y
|
||||
k = math.tan(theta + math.pi / 2) # 入射角
|
||||
# 求保护弧到直线的距离,判断是否相交
|
||||
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
|
||||
d_to_rs = distance_point_line(rs_x, rs_y, line_x, line_y, k)
|
||||
if d_to_rs < rs: # 相交
|
||||
# 要用过直线上一点到暴露弧的切线
|
||||
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||
new_k = tangent_line_k(line_x, line_y, rs_x, rs_y, rs, init_k=k)
|
||||
if new_k >= 0:
|
||||
max_w = math.atan(new_k) # 用于保护弧相切的角度
|
||||
elif new_k < 0:
|
||||
|
|
@ -183,20 +239,23 @@ def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
|
|||
return r
|
||||
|
||||
|
||||
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
||||
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph) # θ角度
|
||||
def bd_area(
|
||||
i_curt, u_ph, rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, ground_surface, rg_type
|
||||
): # 暴露弧的投影面积
|
||||
theta1, theta2 = intersection_angle(
|
||||
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_surface, rg_type
|
||||
) # θ角度
|
||||
theta_fineness = 0.01
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
rs = rs_fun(i_curt)
|
||||
rg = rg_fun(i_curt, h_cav)
|
||||
r_bd = 0
|
||||
rg = rg_fun(i_curt, rc_y, u_ph, typ=rg_type)
|
||||
theta_sample, d_theta = np.linspace(
|
||||
theta1, theta2, int((theta2 - theta1) / theta_fineness), retstep=True
|
||||
)
|
||||
if len(theta_sample) < 2:
|
||||
return 0
|
||||
vec_calculus_bd = np.vectorize(calculus_bd)
|
||||
calculus_bd_np = vec_calculus_bd(theta_sample, rc, rs, rg, dgc, h_cav, h_gav)
|
||||
calculus_bd_np = vec_calculus_bd(theta_sample, rc, rs, rg, rc_x, rc_y, rs_x, rs_y)
|
||||
r_bd = np.sum(calculus_bd_np[:-1] + calculus_bd_np[1:]) / 2 * d_theta
|
||||
# for calculus_theta in theta_sample[:-1]:
|
||||
# r_bd += (
|
||||
|
|
@ -214,7 +273,7 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
|||
# 直线方程为 y-y0=k(x-x0),x0和y0为经过直线的任意一点
|
||||
# 牛顿法求解k
|
||||
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
|
||||
|
||||
# 已考虑两个解的判别
|
||||
k_candidate = [-100, 100]
|
||||
if abs(center_y - line_y) < 1 and abs(line_x - center_x - radius) < 1:
|
||||
# k不存在
|
||||
|
|
@ -248,10 +307,10 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
|||
# 把k转化成相应的角度,从x开始,逆时针为正
|
||||
k_angle = []
|
||||
for kk in k_candidate:
|
||||
if kk is None:
|
||||
abc = 123
|
||||
# tangent_line_k(line_x, line_y, center_x, center_y, radius)
|
||||
pass
|
||||
# if kk is None:
|
||||
# abc = 123
|
||||
# # tangent_line_k(line_x, line_y, center_x, center_y, radius)
|
||||
# pass
|
||||
if kk >= 0:
|
||||
k_angle.append(math.atan(kk))
|
||||
if kk < 0:
|
||||
|
|
@ -262,3 +321,19 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
|||
|
||||
def func_ng(td): # 地闪密度
|
||||
return 0.023 * (td ** 1.3)
|
||||
|
||||
|
||||
# 圆和地面线的交点,只去正x轴上的。
|
||||
def circle_ground_surface_intersection(radius, center_x, center_y, ground_surface):
|
||||
# 最笨的办法,一个个去试
|
||||
x_series = np.linspace(0, radius, int(radius / 0.001)) + center_x
|
||||
part_to_be_squared = radius ** 2 - (x_series - center_x) ** 2 # 有可能出现-0.00001的数值,只是一个数值稳定问题。
|
||||
part_to_be_squared[
|
||||
(part_to_be_squared < 0) & (abs(part_to_be_squared) < 1e-3)
|
||||
] = 0 # 强制为0
|
||||
y_series = center_y - part_to_be_squared ** 0.5
|
||||
ground_surface_y = ground_surface(x_series)
|
||||
equal_location = np.abs(ground_surface_y - y_series) < 0.5
|
||||
r_x = x_series[equal_location][0]
|
||||
r_y = ground_surface(r_x)
|
||||
return r_x, r_y
|
||||
|
|
|
|||
311
main.py
311
main.py
|
|
@ -1,135 +1,212 @@
|
|||
import numpy as np
|
||||
|
||||
from core import *
|
||||
import timeit
|
||||
|
||||
|
||||
def egm():
|
||||
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
|
||||
voltage_n = 3 # 工作电压分成多少份来计算
|
||||
ng = func_ng(20)
|
||||
h_g_avr_sag = 11.67 * 2 / 3
|
||||
h_c_avr_sag = 14.43 * 2 / 3
|
||||
h_whole = 140 # 杆塔全高
|
||||
voltage_n = 3 # 工作电压分成多少份来计算
|
||||
td = 20 # 雷暴日
|
||||
insulator_c_len = 6.8 # 串子绝缘长度
|
||||
string_c_len = 9.2
|
||||
string_g_len = 0.5
|
||||
dgc = -0.0 # 导地线水平距离
|
||||
vertical_dgc = 2.7 # 导地线挂点垂直距离
|
||||
h_g_avr_sag = 11.67 * 2 / 3
|
||||
h_c_avr_sag = 14.43 * 2 / 3
|
||||
h_gav = h_whole - string_g_len - h_g_avr_sag # 地线对地平均高
|
||||
h_cav = h_whole - string_c_len - vertical_dgc - h_c_avr_sag # 导线对地平均高
|
||||
shield_angle = math.atan(dgc / (vertical_dgc + string_c_len)) * 180 / math.pi
|
||||
print(f"保护角{shield_angle:.3f}°")
|
||||
for u_bar in range(voltage_n):
|
||||
u_ph = (
|
||||
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
|
||||
) # 运行相电压
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||||
_min_i = i_min # 尝试的最小电流
|
||||
_max_i = 200 # 尝试的最大电流
|
||||
cad = Draw()
|
||||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
||||
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
|
||||
# print(f"尝试计算电流为{i_bar:.2f}")
|
||||
rs = rs_fun(i_bar)
|
||||
rc = rc_fun(i_bar, u_ph)
|
||||
rg = rg_fun(i_bar, h_cav)
|
||||
#######
|
||||
# cccCount += 1
|
||||
# if cccCount % 30 == 0:
|
||||
# import core
|
||||
#
|
||||
# core.gMSP.add_circle((0, h_gav), rs)
|
||||
# core.gMSP.add_circle(
|
||||
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
|
||||
# )
|
||||
# core.gMSP.add_circle((dgc, h_cav), rc)
|
||||
#######
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
if not circle_intersection: # if circle_intersection is []
|
||||
# print("保护弧和暴露弧无交点,检查设置参数。程序退出。")
|
||||
continue
|
||||
circle_rc_line_intersection = solve_circle_line_intersection(
|
||||
rc, rg, dgc, h_cav
|
||||
)
|
||||
if not circle_rc_line_intersection:
|
||||
continue
|
||||
min_distance_intersection = (
|
||||
np.sum(
|
||||
(
|
||||
np.array(circle_intersection)
|
||||
- np.array(circle_rc_line_intersection)
|
||||
gc_x = [17.9, 16, 15, 16]
|
||||
|
||||
# 以后考虑地形角度,地面线
|
||||
def ground_surface(x):
|
||||
return 0
|
||||
|
||||
gc_y = [
|
||||
h_whole - string_g_len - h_g_avr_sag, # 地线对地平均高
|
||||
h_whole - string_c_len - h_c_avr_sag - 2.7, # 导线对地平均高
|
||||
h_whole - string_c_len - h_c_avr_sag - 20, # 导线对地平均高
|
||||
h_whole - string_c_len - h_c_avr_sag - 35.7, # 导线对地平均高
|
||||
]
|
||||
if len(gc_y) > 2: # 双回路
|
||||
phase_n = 3 # 边相导线数量
|
||||
else:
|
||||
phase_n = 1
|
||||
#########################################################
|
||||
rg_type = None
|
||||
# 以上是需要设置的参数
|
||||
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
|
||||
rg_x = None
|
||||
rg_y = None
|
||||
cad = Draw()
|
||||
for phase_conductor in range(phase_n):
|
||||
rs_x = gc_x[phase_conductor]
|
||||
rs_y = gc_y[phase_conductor]
|
||||
rc_x = gc_x[phase_conductor + 1]
|
||||
rc_y = gc_y[phase_conductor + 1]
|
||||
if phase_n == 1:
|
||||
rg_type = "g"
|
||||
if phase_n > 1: # 多回路
|
||||
if phase_conductor < 2:
|
||||
rg_type = "c"
|
||||
rg_x = gc_x[phase_conductor + 2]
|
||||
rg_y = gc_y[phase_conductor + 2]
|
||||
else:
|
||||
rg_type = "g"
|
||||
# TODO 保护角公式可能有问题,后面改
|
||||
shield_angle = (
|
||||
math.atan(rc_x / ((rc_y - rs_y) + string_c_len)) * 180 / math.pi
|
||||
) # 保护角
|
||||
print(f"保护角{shield_angle:.3f}°")
|
||||
print(f"最低相防护标识{rg_type}")
|
||||
ng = func_ng(td)
|
||||
for u_bar in range(voltage_n):
|
||||
u_ph = (
|
||||
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
|
||||
) # 运行相电压
|
||||
print(f"计算第{phase_conductor + 1}相,电压为{u_ph:.2f}kV")
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||||
_min_i = i_min # 尝试的最小电流
|
||||
_max_i = 200 # 尝试的最大电流
|
||||
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
for i_bar in np.linspace(
|
||||
_min_i, _max_i, int((_max_i - _min_i) / 0.1)
|
||||
): # 雷电流
|
||||
# print(f"尝试计算电流为{i_bar:.2f}")
|
||||
rs = rs_fun(i_bar)
|
||||
rc = rc_fun(i_bar, u_ph)
|
||||
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
|
||||
#######
|
||||
# cccCount += 1
|
||||
# if cccCount % 30 == 0:
|
||||
# import core
|
||||
#
|
||||
# core.gMSP.add_circle((0, h_gav), rs)
|
||||
# core.gMSP.add_circle(
|
||||
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
|
||||
# )
|
||||
# core.gMSP.add_circle((dgc, h_cav), rc)
|
||||
#######
|
||||
rg_rc_circle_intersection = solve_circle_intersection(
|
||||
rs, rc, rs_x, rs_y, rc_x, rc_y
|
||||
)
|
||||
i_max = i_bar
|
||||
if not rg_rc_circle_intersection: # if circle_intersection is []
|
||||
print("保护弧和暴露弧无交点,检查设置参数。")
|
||||
continue
|
||||
circle_rc_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_rc_line_or_rg_intersection = solve_circle_line_intersection(
|
||||
rc, rg, rc_x, rc_y
|
||||
)
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
) # 计算两圆交点和地面直线交点的最小距离
|
||||
i_max = i_bar
|
||||
if min_distance_intersection < 0.1:
|
||||
break
|
||||
if circle_intersection[1] < circle_rc_line_intersection[1]:
|
||||
circle_rs_line_intersection = solve_circle_line_intersection(
|
||||
rs, rg, 0, h_gav
|
||||
)
|
||||
# 判断与保护弧的交点是否在暴露弧外面
|
||||
distance = (
|
||||
elif rg_type == "c":
|
||||
circle_rc_line_or_rg_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
)
|
||||
if not circle_rc_line_or_rg_intersection:
|
||||
# 暴露弧和捕捉弧无交点
|
||||
if rg_type == "g":
|
||||
if rg > rc_y:
|
||||
i_min = i_bar
|
||||
print(f"捕捉弧在暴露弧之上,设置最小电流为{i_min:.2f}")
|
||||
else:
|
||||
print("暴露弧和捕捉弧无交点,检查设置参数。")
|
||||
continue
|
||||
else:
|
||||
print("暴露弧和捕捉弧无交点,检查设置参数。")
|
||||
continue
|
||||
min_distance_intersection = (
|
||||
np.sum(
|
||||
(np.array(circle_rs_line_intersection) - np.array([dgc, h_cav]))
|
||||
(
|
||||
np.array(rg_rc_circle_intersection)
|
||||
- np.array(circle_rc_line_or_rg_intersection)
|
||||
)
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
)
|
||||
if distance > rc:
|
||||
print("暴露弧已经完全被屏蔽")
|
||||
) # 计算两圆交点和地面直线交点的最小距离
|
||||
if min_distance_intersection < 0.1:
|
||||
break
|
||||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
||||
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
|
||||
cad.save()
|
||||
# 判断是否导线已经被完全保护
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
print("无法找到最大电流,可能是杆塔较高。")
|
||||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
print(f"最大电流为{i_max:.2f}")
|
||||
print(f"最小电流为{i_min:.2f}")
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||||
print("最大电流小于最小电流,没有暴露弧,程序结束。")
|
||||
return
|
||||
# 开始积分
|
||||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||||
calculus = 0
|
||||
i_curt_samples, d_curt = np.linspace(
|
||||
i_min, i_max, curt_segment_n + 1, retstep=True
|
||||
)
|
||||
bd_area_vec = np.vectorize(bd_area)
|
||||
cal_bd_np = bd_area_vec(
|
||||
i_curt_samples, u_ph, dgc, h_gav, h_cav
|
||||
) * thunder_density(i_curt_samples)
|
||||
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
|
||||
# for i_curt in i_curt_samples[:-1]:
|
||||
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_thunder_density_first = thunder_density(i_curt)
|
||||
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
||||
# calculus += (
|
||||
# (
|
||||
# cal_bd_first * cal_thunder_density_first
|
||||
# + cal_bd_second * cal_thunder_density_second
|
||||
# )
|
||||
# / 2
|
||||
# * d_curt
|
||||
# )
|
||||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||||
# abc=123
|
||||
# pass
|
||||
n_sf = (
|
||||
2 * ng / 10 * calculus
|
||||
) # 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||||
avr_n_sf += n_sf / voltage_n
|
||||
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||||
print(f"跳闸率是{avr_n_sf:.6}")
|
||||
# 判断是否以完全被保护
|
||||
if rg_rc_circle_intersection[1] < circle_rc_line_or_rg_intersection[1]:
|
||||
circle_rs_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_rs_line_or_rg_intersection = (
|
||||
solve_circle_line_intersection(rs, rg, rs_x, rs_y)
|
||||
)
|
||||
if rg_type == "c":
|
||||
circle_rs_line_or_rg_intersection = solve_circle_intersection(
|
||||
rs, rg, rs_x, rs_y, rg_x, rg_y
|
||||
)
|
||||
# 判断与保护弧的交点是否在暴露弧外面
|
||||
distance = (
|
||||
np.sum(
|
||||
(
|
||||
np.array(circle_rs_line_or_rg_intersection)
|
||||
- np.array([rc_x, rc_y])
|
||||
)
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
)
|
||||
if distance > rc:
|
||||
print("暴露弧已经完全被屏蔽")
|
||||
break
|
||||
if phase_conductor == 1:
|
||||
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
|
||||
cad.save()
|
||||
# 判断是否导线已经被完全保护
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
print("无法找到最大电流,可能是杆塔较高。")
|
||||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
print(f"最大电流为{i_max:.2f}")
|
||||
print(f"最小电流为{i_min:.2f}")
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||||
print("最大电流小于最小电流,没有暴露弧。")
|
||||
continue
|
||||
# 开始积分
|
||||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||||
i_curt_samples, d_curt = np.linspace(
|
||||
i_min, i_max, curt_segment_n + 1, retstep=True
|
||||
)
|
||||
bd_area_vec = np.vectorize(bd_area)
|
||||
cal_bd_np = (
|
||||
bd_area_vec(
|
||||
i_curt_samples,
|
||||
u_ph,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
ground_surface,
|
||||
rg_type,
|
||||
)
|
||||
* thunder_density(i_curt_samples)
|
||||
)
|
||||
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
|
||||
# for i_curt in i_curt_samples[:-1]:
|
||||
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_thunder_density_first = thunder_density(i_curt)
|
||||
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
||||
# calculus += (
|
||||
# (
|
||||
# cal_bd_first * cal_thunder_density_first
|
||||
# + cal_bd_second * cal_thunder_density_second
|
||||
# )
|
||||
# / 2
|
||||
# * d_curt
|
||||
# )
|
||||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||||
# abc=123
|
||||
# pass
|
||||
n_sf = (
|
||||
2 * ng / 10 * calculus
|
||||
) # 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||||
avr_n_sf += n_sf / voltage_n
|
||||
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||||
print(f"跳闸率是{avr_n_sf:.6f}")
|
||||
|
||||
|
||||
def speed():
|
||||
|
|
|
|||
Loading…
Reference in New Issue