Compare commits

...

4 Commits

Author SHA1 Message Date
dmy
7a5bb05f58 1.每一次计算都重新画画。 2024-11-06 23:32:51 +08:00
n3040
13e25832ed 基本实现了动画。 2024-01-03 16:47:22 +08:00
n3040
5dc1613d2a 加了一些TODO 2024-01-03 14:28:28 +08:00
n3040
9b852235f1 准备进行陇东大跨越计算。 2022-07-15 12:47:43 +08:00
5 changed files with 357 additions and 120 deletions

13
.gitignore vendored Normal file
View File

@@ -0,0 +1,13 @@
*.dxf
build
__pycache__
CSharp
.idea
dist
*.spec
*.dwg
历史
.venv
*.toml
launch.json
settings.json

94
animation.py Normal file
View File

@@ -0,0 +1,94 @@
import matplotlib.pyplot as plt
from functools import wraps
import numpy as np
class Animation:
def __init__(self) -> None:
fig, ax = plt.subplots()
self._fig = fig
self._ax = ax
self._ticks = 0
self._disable = False
self.init_fig()
pass
@staticmethod
def switch_decorator(func):
@wraps(func)
def not_run(cls, *args, **kwargs):
# print("not run")
pass
@wraps(func)
def wrapTheFunction(cls, *args, **kwargs):
if not cls._disable:
# print("desc")
return func(cls, *args, **kwargs)
return not_run(cls, *args, **kwargs)
return wrapTheFunction
def disable(self, _disable):
self._disable = _disable
@switch_decorator
def init_fig(self):
ax = self._ax
ax.set_aspect(1)
ax.set_xlim([-500, 500])
ax.set_ylim([-500, 500])
@switch_decorator
def show(self):
self._fig.show()
@switch_decorator
def add_rg_line(self, line_func):
ax = self._ax
x = np.linspace(0, 300)
y = line_func(x)
ax.plot(x, y)
@switch_decorator
def add_rs(self, rs, rs_x, rs_y):
ax = self._ax
ax.add_artist(plt.Circle((rs_x, rs_y), rs, fill=False))
@switch_decorator
def add_rc(self, rc, rc_x, rc_y):
ax = self._ax
ax.add_artist(plt.Circle((rc_x, rc_y), rc, fill=False))
# 增加暴露弧范围
@switch_decorator
def add_expose_area(
self,
rc_x,
rc_y,
intersection_x1,
intersection_y1,
intersection_x2,
intersection_y2,
):
ax = self._ax
ax.plot([rc_x, intersection_x1], [rc_y, intersection_y1], color="red")
ax.plot([rc_x, intersection_x2], [rc_y, intersection_y2], color="red")
pass
@switch_decorator
def clear(self):
ax = self._ax
ax.cla()
@switch_decorator
def pause(self):
ax = self._ax
self._ticks += 1
ticks = self._ticks
ax.set_title(f"{ticks}")
plt.pause(0.02)
self.clear()
self.init_fig()
pass

26
core.py
View File

@@ -1,6 +1,7 @@
import math import math
import ezdxf import ezdxf
import numpy as np import numpy as np
from typing import List
gCAD = None gCAD = None
gMSP = None gMSP = None
@@ -15,8 +16,8 @@ class Parameter:
insulator_c_len: float # 串子绝缘长度 insulator_c_len: float # 串子绝缘长度
string_c_len: float string_c_len: float
string_g_len: float string_g_len: float
gc_x: [float] # 导、地线水平坐标 gc_x: List[float] # 导、地线水平坐标
ground_angels: [float] # 地面倾角,向下为正 ground_angels: List[float] # 地面倾角,向下为正
h_arm: float # 导、地线垂直坐标 h_arm: float # 导、地线垂直坐标
altitude: int # 海拔,单位米 altitude: int # 海拔,单位米
max_i: float # 最大尝试电流单位kA max_i: float # 最大尝试电流单位kA
@@ -131,7 +132,7 @@ def solve_circle_intersection(
x = radius2 + center_x2 # 初始值 x = radius2 + center_x2 # 初始值
y = radius2 + center_y2 # 初始值 y = radius2 + center_y2 # 初始值
# TODO 考虑出现2个解的情况 # TODO 考虑出现2个解的情况
for bar in range(0, 10): for _ in range(0, 10):
A = [ A = [
[-2 * (x - center_x1), -2 * (y - center_y1)], [-2 * (x - center_x1), -2 * (y - center_y1)],
[-2 * (x - center_x2), -2 * (y - center_y2)], [-2 * (x - center_x2), -2 * (y - center_y2)],
@@ -189,12 +190,20 @@ def solve_circle_line_intersection(
def min_i(string_len, u_ph): def min_i(string_len, u_ph):
# 海拔修正 # 海拔修正
altitude = para.altitude altitude = para.altitude
if altitude > 1000:
k_a = math.exp((altitude - 1000) / 8150) # 气隙海拔修正 k_a = math.exp((altitude - 1000) / 8150) # 气隙海拔修正
else:
k_a = 1
u_50 = 1 / k_a * (530 * string_len + 35) # 50045 上附录的公式,实际应该用负极性电压的公式 u_50 = 1 / k_a * (530 * string_len + 35) # 50045 上附录的公式,实际应该用负极性电压的公式
# u_50 = 1 / k_a * (533 * string_len + 132) # 串放电路径 1000m海拔
# u_50 = 1 / k_a * (477 * string_len + 99) # 串放电路径 2000m海拔
# u_50 = 615 * string_len # 导线对塔身放电 1000m海拔
# u_50= 263.32647401+533.90081562*string_len
z_0 = 300 # 雷电波阻抗 z_0 = 300 # 雷电波阻抗
z_c = 251 # 导线波阻抗 z_c = 251 # 导线波阻抗
# 新版大手册公式 3-277 # 新版大手册公式 3-277
r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c) r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c)
# r = 2 * (u_50 - u_ph) / z_c
return r return r
@@ -207,12 +216,15 @@ def thunder_density(i, td, ip_a, ip_b): # 雷电流幅值密度函数
r = -( r = -(
-ip_b / ip_a / ((1 + (i / ip_a) ** ip_b) ** 2) * ((i / ip_a) ** (ip_b - 1)) -ip_b / ip_a / ((1 + (i / ip_a) ** ip_b) ** 2) * ((i / ip_a) ** (ip_b - 1))
) )
return r
else: else:
if td == 20: if td == 20:
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44) # 雷暴日20d r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44) # 雷暴日20d
return r
if td == 40: if td == 40:
r = -(10 ** (-i / 88)) * math.log(10) * (-1 / 88) # 雷暴日40d r = -(10 ** (-i / 88)) * math.log(10) * (-1 / 88) # 雷暴日40d
return r return r
raise Exception("检查雷电参数!")
def angel_density(angle): # 入射角密度函数 angle单位是弧度 def angel_density(angle): # 入射角密度函数 angle单位是弧度
@@ -226,7 +238,7 @@ def rs_fun(i):
def rc_fun(i, u_ph): def rc_fun(i, u_ph):
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125) # 新版大手册公式3-272 r = 1.63 * ((5.015 * (i**0.578) - 0.001 * u_ph * 1) ** 1.125) # 新版大手册公式3-272
return r return r
@@ -235,7 +247,7 @@ def rg_fun(i_curt, h_cav, u_ph, typ="g"):
rg = None rg = None
if typ == "g": if typ == "g":
if h_cav < 40: if h_cav < 40:
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65) # 新版大手册公式3-273 rg = (3.6 + 1.7 * math.log(43 - h_cav)) * (i_curt**0.65) # 新版大手册公式3-273
else: else:
rg = 5.5 * (i_curt**0.65) # 新版大手册公式3-273 rg = 5.5 * (i_curt**0.65) # 新版大手册公式3-273
elif typ == "c": # 此时返回的是圆半径 elif typ == "c": # 此时返回的是圆半径
@@ -473,6 +485,8 @@ def circle_ground_surface_intersection(radius, center_x, center_y, ground_surfac
# insulator_c_len绝缘子闪络距离 # insulator_c_len绝缘子闪络距离
def arc_possibility(rated_voltage, insulator_c_len): # 建弧率 def arc_possibility(rated_voltage, insulator_c_len): # 建弧率
# 50064 中附录给的公式 # 50064 中附录给的公式
_e = rated_voltage / (3 ** 0.5) / insulator_c_len # TODO 需要区分交直流
# _e = rated_voltage / (3**0.5) / insulator_c_len #交流
_e = abs(rated_voltage) / (1) / insulator_c_len # 直流
r = (4.5 * (_e**0.75) - 14) * 1e-2 r = (4.5 * (_e**0.75) - 14) * 1e-2
return r return r

178
main.py
View File

@@ -1,10 +1,12 @@
import math import math
import os.path import os.path
import sys import sys
import time
import tomli import tomli
from loguru import logger from loguru import logger
from core import * from core import *
import timeit import timeit
from animation import Animation
# 打印参数 # 打印参数
@@ -59,7 +61,7 @@ def read_parameter(toml_file_path):
def egm(): def egm():
if len(sys.argv) < 2: if len(sys.argv) < 2:
toml_file_path = r"default.toml" toml_file_path = r"内自500kV-ZCK上相.toml"
else: else:
toml_file_path = sys.argv[1] toml_file_path = sys.argv[1]
if not os.path.exists(toml_file_path): if not os.path.exists(toml_file_path):
@@ -70,7 +72,7 @@ def egm():
######################################################### #########################################################
# 以上是需要设置的参数 # 以上是需要设置的参数
parameter_display(para) parameter_display(para)
h_whole = para.h_arm[0] # 塔全 h_whole = para.h_arm[0] # 挂点
string_g_len = para.string_g_len string_g_len = para.string_g_len
string_c_len = para.string_c_len string_c_len = para.string_c_len
h_g_sag = para.h_g_sag h_g_sag = para.h_g_sag
@@ -82,7 +84,7 @@ def egm():
] ]
if len(h_arm) > 1: if len(h_arm) > 1:
for hoo in h_arm[1:]: for hoo in h_arm[1:]:
gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3) gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3) # 导线平均高
if len(gc_y) > 2: # 双回路 if len(gc_y) > 2: # 双回路
phase_n = 3 # 边相导线数量 phase_n = 3 # 边相导线数量
else: else:
@@ -92,12 +94,15 @@ def egm():
ng = func_ng(td) ng = func_ng(td)
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率 avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
ground_angels = para.ground_angels ground_angels = para.ground_angels
# 初始化动画
animate = Animation()
animate.disable(False)
# animate.show()
for ground_angel in ground_angels: for ground_angel in ground_angels:
logger.info(f"地面倾角{ground_angel/math.pi*180:.3f}°") logger.info(f"地面倾角{ground_angel/math.pi*180:.3f}°")
rg_type = None rg_type = None
rg_x = None rg_x = None
rg_y = None rg_y = None
cad = Draw()
voltage_n = para.voltage_n voltage_n = para.voltage_n
n_sf_phases = np.zeros((phase_n, voltage_n)) # 存储每一相的跳闸率 n_sf_phases = np.zeros((phase_n, voltage_n)) # 存储每一相的跳闸率
if np.any(np.array(gc_y) < 0): if np.any(np.array(gc_y) < 0):
@@ -113,13 +118,13 @@ def egm():
rg_type = "g" rg_type = "g"
if phase_n > 1: # 多回路 if phase_n > 1: # 多回路
if phase_conductor_foo < 2: if phase_conductor_foo < 2:
rg_type = "c" # 捕捉弧下面一相导线的击距代替 rg_type = "c" # 捕捉弧下面一相导线的击距代替
rg_x = gc_x[phase_conductor_foo + 2] rg_x = gc_x[phase_conductor_foo + 2]
rg_y = gc_y[phase_conductor_foo + 2] rg_y = gc_y[phase_conductor_foo + 2]
else: else:
rg_type = "g" rg_type = "g"
# TODO 保护角公式可能有问题,后面改 # TODO 保护角公式可能有问题,后面改
shield_angle = ( shield_angle_at_avg_height = (
math.atan( math.atan(
(rc_x - rs_x) (rc_x - rs_x)
/ ( / (
@@ -129,78 +134,113 @@ def egm():
) )
* 180 * 180
/ math.pi / math.pi
) # 保护角 ) # 挂点处保护角
logger.info(f"保护角{shield_angle:.3f}°") logger.info(f"挂点处保护角{shield_angle_at_avg_height:.3f}°")
logger.debug(f"最低相防护标识{rg_type}") logger.debug(f"最低相防护标识{rg_type}")
rated_voltage = para.rated_voltage
for u_bar in range(voltage_n): # 计算不同工作电压下的跳闸率 for u_bar in range(voltage_n): # 计算不同工作电压下的跳闸率
u_ph = ( # TODO 需要区分交、直流
math.sqrt(2) # u_ph = (
* 750 # math.sqrt(2)
* math.cos(2 * math.pi / voltage_n * u_bar) # * rated_voltage
/ 1.732 # * math.cos(2 * math.pi / voltage_n * u_bar)
) # 运行相电压 # / 1.732
# ) # 运行相电压
u_ph = rated_voltage / 1.732
logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV") logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
# 迭代法计算最大电流 # 迭代法计算最大电流
i_max = 0 i_max = 0
insulator_c_len = para.insulator_c_len insulator_c_len = para.insulator_c_len
i_min = min_i(insulator_c_len, u_ph / 1.732) # i_min = min_i(insulator_c_len, u_ph / 1.732)
# TODO 需要考虑交、直流
i_min = min_i(insulator_c_len, u_ph)
_min_i = i_min # 尝试的最小电流 _min_i = i_min # 尝试的最小电流
_max_i = para.max_i # 尝试的最大电流 _max_i = para.max_i # 尝试的最大电流
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2) # cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
for i_bar in np.linspace( for i_bar in np.linspace(
_min_i, _max_i, int((_max_i - _min_i) / 0.1) _min_i, _max_i, int((_max_i - _min_i) / 1)
): # 雷电流 ): # 雷电流
# logger.info(f"尝试计算电流为{i_bar:.2f}") logger.info(f"尝试计算电流为{i_bar:.2f}")
rs = rs_fun(i_bar) rs = rs_fun(i_bar)
animate.add_rs(rs, rs_x, rs_y)
rc = rc_fun(i_bar, u_ph) rc = rc_fun(i_bar, u_ph)
animate.add_rc(rc, rc_x, rc_y)
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type) rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
rg_line_func = None rg_line_func = None
if rg_type == "g": if rg_type == "g":
rg_line_func = rg_line_function_factory(rg, ground_angel) rg_line_func = rg_line_function_factory(rg, ground_angel)
####### animate.add_rg_line(rg_line_func)
# cccCount += 1 rs_rc_circle_intersection = solve_circle_intersection(
# if cccCount % 30 == 0:
# import core
#
# core.gMSP.add_circle((0, h_gav), rs)
# core.gMSP.add_circle(
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
# )
# core.gMSP.add_circle((dgc, h_cav), rc)
#######
rg_rc_circle_intersection = solve_circle_intersection(
rs, rc, rs_x, rs_y, rc_x, rc_y rs, rc, rs_x, rs_y, rc_x, rc_y
) )
i_max = i_bar i_max = i_bar
if not rg_rc_circle_intersection: # if circle_intersection is [] if not rs_rc_circle_intersection: # if circle_intersection is []
logger.debug("保护弧和暴露弧无交点,检查设置参数。") logger.debug("保护弧和暴露弧无交点,检查设置参数。")
continue continue
circle_rc_line_or_rg_intersection = None circle_rc_or_rg_line_intersection = None
if rg_type == "g": if rg_type == "g":
circle_rc_line_or_rg_intersection = ( circle_rc_or_rg_line_intersection = (
solve_circle_line_intersection(rc, rc_x, rc_y, rg_line_func) solve_circle_line_intersection(rc, rc_x, rc_y, rg_line_func)
) )
elif rg_type == "c": elif rg_type == "c":
circle_rc_line_or_rg_intersection = solve_circle_intersection( circle_rc_or_rg_line_intersection = solve_circle_intersection(
rg, rc, rg_x, rg_y, rc_x, rc_y rg, rc, rg_x, rg_y, rc_x, rc_y
) )
if not circle_rc_line_or_rg_intersection: if not circle_rc_or_rg_line_intersection:
# 暴露弧和捕捉弧无交点 # 暴露弧和捕捉弧无交点
if rg_type == "g": if rg_type == "g":
if rg_line_func(rc_x) > rc_y: if rg_line_func(rc_x) > rc_y:
i_min = i_bar # 用于后面判断最小和最大电流是否相等,相等意味着暴露弧一直被屏蔽 i_min = i_bar # 用于后面判断最小和最大电流是否相等,相等意味着暴露弧一直被屏蔽
logger.info(f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}") logger.info(
f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}"
)
else: else:
logger.info("暴露弧和地面捕捉弧无交点,检查设置参数。") logger.info("暴露弧和地面捕捉弧无交点,检查设置参数。")
continue continue
else: else:
logger.info("上面的导地线无法保护下面的导地线,检查设置参数。") logger.info(
"上面的导地线无法保护下面的导地线,检查设置参数。"
)
continue continue
animate.add_expose_area(
rc_x,
rc_y,
*rs_rc_circle_intersection,
*circle_rc_or_rg_line_intersection,
)
cad = Draw()
cad.draw(
i_min,
u_ph,
rs_x,
rs_y,
rc_x,
rc_y,
rg_x,
rg_y,
rg_type,
ground_angel,
2,
) # 最小电流时
cad.draw(
i_max,
u_ph,
rs_x,
rs_y,
rc_x,
rc_y,
rg_x,
rg_y,
rg_type,
ground_angel,
6,
) # 最大电流时
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
min_distance_intersection = ( min_distance_intersection = (
np.sum( np.sum(
( (
np.array(rg_rc_circle_intersection) np.array(rs_rc_circle_intersection)
- np.array(circle_rc_line_or_rg_intersection) - np.array(circle_rc_or_rg_line_intersection)
) )
** 2 ** 2
) )
@@ -210,8 +250,8 @@ def egm():
break # 已经找到了最大电流 break # 已经找到了最大电流
# 判断是否以完全被保护 # 判断是否以完全被保护
if ( if (
rg_rc_circle_intersection[1] rs_rc_circle_intersection[1]
< circle_rc_line_or_rg_intersection[1] < circle_rc_or_rg_line_intersection[1]
): ):
circle_rs_line_or_rg_intersection = None circle_rs_line_or_rg_intersection = None
if rg_type == "g": if rg_type == "g":
@@ -241,43 +281,16 @@ def egm():
logger.info(f"电流为{i_bar}kV时暴露弧已经完全被屏蔽") logger.info(f"电流为{i_bar}kV时暴露弧已经完全被屏蔽")
exposed_curve_shielded = True exposed_curve_shielded = True
break break
# if phase_conductor_foo == 2: animate.pause()
cad.draw(
i_min,
u_ph,
rs_x,
rs_y,
rc_x,
rc_y,
rg_x,
rg_y,
rg_type,
ground_angel,
2,
)
cad.draw(
i_max,
u_ph,
rs_x,
rs_y,
rc_x,
rc_y,
rg_x,
rg_y,
rg_type,
ground_angel,
6,
)
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
# 判断是否导线已经被完全保护 # 判断是否导线已经被完全保护
if abs(i_max - _max_i) < 1e-5: if abs(i_max - _max_i) < 1e-5:
logger.info("无法找到最大电流,可能是杆塔较高。") logger.info("无法找到最大电流,可能是杆塔较高。")
logger.info(f"最大电流设置为自然界最大电流{i_max}kA") logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
logger.info(f"最大电流为{i_max:.2f}") logger.info(f"最大电流为{i_max:.2f}")
logger.info(f"最小电流为{i_min:.2f}") logger.info(f"最小电流为{i_min:.2f}")
if exposed_curve_shielded: # if exposed_curve_shielded:
logger.info("暴露弧已经完全被屏蔽,不会跳闸。") # logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
continue # continue
curt_fineness = 0.1 # 电流积分细度 curt_fineness = 0.1 # 电流积分细度
if i_min > i_max or abs(i_min - i_max) < curt_fineness: if i_min > i_max or abs(i_min - i_max) < curt_fineness:
logger.info("最大电流小于等于最小电流,没有暴露弧。") logger.info("最大电流小于等于最小电流,没有暴露弧。")
@@ -291,8 +304,7 @@ def egm():
td = para.td td = para.td
ip_a = para.Ip_a ip_a = para.Ip_a
ip_b = para.Ip_b ip_b = para.Ip_b
cal_bd_np = ( bd_area_vec_result = bd_area_vec(
bd_area_vec(
i_curt_samples, i_curt_samples,
u_ph, u_ph,
rc_x, rc_x,
@@ -304,8 +316,10 @@ def egm():
ground_angel, ground_angel,
rg_type, rg_type,
) )
* thunder_density(i_curt_samples, td, ip_a, ip_b) thunder_density_result = thunder_density(
) i_curt_samples, td, ip_a, ip_b
) # 雷电流幅值密度函数
cal_bd_np = bd_area_vec_result * thunder_density_result
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
# for i_curt in i_curt_samples[:-1]: # for i_curt in i_curt_samples[:-1]:
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav) # cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
@@ -333,10 +347,10 @@ def egm():
) )
avr_n_sf += n_sf / voltage_n avr_n_sf += n_sf / voltage_n
n_sf_phases[phase_conductor_foo][u_bar] = n_sf n_sf_phases[phase_conductor_foo][u_bar] = n_sf
logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.16f}") logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.16f}次/(100km·a)")
logger.info(f"跳闸率是{avr_n_sf:.16f}") logger.info(f"线路跳闸率是{avr_n_sf:.16f}次/(100km·a)")
logger.info( logger.info(
f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=16)}" f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=16)}次/(100km·a)"
) )
@@ -349,6 +363,8 @@ def speed():
if __name__ == "__main__": if __name__ == "__main__":
logger.remove() logger.remove()
logger.add(sys.stderr, level="DEBUG") logger.add(sys.stderr, level="DEBUG")
run_time = timeit.timeit("egm()", globals=globals(), number=1) egm()
print(f"运行时间:{run_time:.2f}s") # run_time = timeit.timeit("egm()", globals=globals(), number=1)
print("Finished.") # logger.info(f"运行时间:{run_time:.2f}s")
# input('enter any key to exit.')
logger.info("Finished.")

100
plot.py Normal file
View File

@@ -0,0 +1,100 @@
import matplotlib
from plot_data import *
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
matplotlib.use("Qt5Agg")
# 解决中文乱码
plt.rcParams["font.sans-serif"] = ["simsun"]
plt.rcParams["font.family"] = "sans-serif"
# plt.rcParams["font.weight"] = "bold"
# 解决负号无法显示的问题
plt.rcParams["axes.unicode_minus"] = False
plt.rcParams["savefig.dpi"] = 1200 # 图片像素
# plt.savefig("port.png", dpi=600, bbox_inches="tight")
fontsize = 12
################################################
witdh_of_bar=0.3
color=plt.cm.BuPu(np.linspace(152/255, 251/255,152/255))
percent1 = data_150m塔高_不同地线保护角[:, 1] / data_150m塔高_不同地线保护角[:, 0]
# percent1 = data_66m串长_不同塔高[:, 1] / data_66m串长_不同塔高[:, 0]
# percent2 = data_68m串长_不同塔高[:, 1] / data_68m串长_不同塔高[:, 0]
fig, ax = plt.subplots()
x = np.arange(len(category_names_150m塔高_不同地线保护角)) # the label locations
p1 = ax.bar(category_names_150m塔高_不同地线保护角, percent1, witdh_of_bar, label="绕击/反击跳闸率比值",color=color,hatch='-')
# p1 = ax.bar(x - 0.3 / 2, percent1, 0.3, label="6.6m绝缘距离")
# p2 = ax.bar(x + 0.3 / 2, percent2, 0.3, label="6.8m绝缘距离")
ax.xaxis.set_major_locator(mticker.FixedLocator(x))
ax.set_xticklabels(category_names_150m塔高_不同地线保护角)
ax.set_ylabel("比值", fontsize=fontsize)
ax.set_xlabel("地线保护角(°)", fontsize=fontsize)
# ax.set_xlabel("接地电阻(Ω)", fontsize=fontsize)
plt.xticks(fontsize=fontsize)
plt.yticks(fontsize=fontsize)
ax.bar_label(p1, padding=0, fontsize=fontsize)
# ax.bar_label(p2, padding=0, fontsize=fontsize)
ax.legend(fontsize=fontsize)
fig.tight_layout()
plt.show()
# results = {
# "100m": 100 * data[0, :] / np.sum(data[0, :]),
# "110m": data[1, :] / np.sum(data[1, :]),
# "120m": data[2, :] / np.sum(data[2, :]),
# "130m": data[3, :] / np.sum(data[3, :]),
# "140m": data[4, :] / np.sum(data[4, :]),
# "150m": data[5, :] / np.sum(data[5, :]),
# }
# def survey(results, category_names):
# """
# Parameters
# ----------
# results : dict
# A mapping from question labels to a list of answers per category.
# It is assumed all lists contain the same number of entries and that
# it matches the length of *category_names*.
# category_names : list of str
# The category labels.
# """
# labels = list(results.keys())
# data = np.array(list(results.values()))
# data_cum = data.cumsum(axis=1)
# category_colors = plt.get_cmap("RdYlGn")(np.linspace(0.15, 0.85, data.shape[1]))
#
# fig, ax = plt.subplots(figsize=(9.2, 5))
# ax.invert_yaxis()
# ax.xaxis.set_visible(False)
# ax.set_xlim(0, np.sum(data, axis=1).max())
#
# for i, (colname, color) in enumerate(zip(category_names, category_colors)):
# widths = data[:, i]
# starts = data_cum[:, i] - widths
# rects = ax.barh(
# labels, widths, left=starts, height=0.5, label=colname, color=color
# )
#
# r, g, b, _ = color
# text_color = "white" if r * g * b < 0.5 else "darkgrey"
# ax.bar_label(rects, label_type="center", color=text_color)
# ax.legend(
# ncol=len(category_names),
# bbox_to_anchor=(0, 1),
# loc="lower left",
# fontsize="small",
# )
#
# return fig, ax
# percent=data/np.sum(data,axis=1)[:,None]*100
# percent = data[:, 1] / data[:, 0]
# plt.bar(category_names, percent, 0.3, label="黑")
# # plt.bar(category_names, percent[:,0], 0.2, label="r")
#
# # plt.bar(category_names, [0.014094 / 100, 0.025094 / 100], 0.2, label="h")
# plt.legend()
# # survey(results, category_names)
# plt.show()