distributionnetwork-power2c.../run.m

255 lines
8.4 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

%% 利用先把负荷转换为电流的方法。这个方法要求知道电压量。
%
clc
clear
lineZ=readLineZ('feeder13\lineParameter.txt');
[ fsY0, fsY1, fsY2,phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP ...
phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ,setIJ,nodeNum,Balance,phaseABCY ...
cap]=dataRead(lineZ,'feeder13\data1.txt');
a=exp(1j*2*pi/3);
Tp2f=1/3*[1 1 1;
1 a a^2;
1 a^2 a];
Tp2f=sparse(Tp2f);
Tf2p=inv(Tp2f);
fsY1amp=abs(fsY1);
[r,c,fsY1ang]=find(fsY1);
fsY1ang=angle(fsY1ang);
Pabc=phaseASpotLoadP+phaseBSpotLoadP+phaseCSpotLoadP;
Qabc=phaseASpotLoadQ+phaseBSpotLoadQ+phaseCSpotLoadQ;
busNum=length(phaseASpotLoadP);
%给序电压赋初值
Vmf1=sparse(ones(busNum,1));
Vaf1=sparse(zeros(busNum,1));
%先求解正序的
PQi=nodeNum;
PG=sparse(busNum,1);
QG=sparse(busNum,1);
QGi=[Balance];
PD=Pabc/3;
QD=Qabc/3;
Loadi=find(PD~=0);
maxD=100000;% 最大不平衡量
EPS=1e-5;
k=0;
kmax=20;
fsY11=fsY1;
fsY00=fsY0;
fsY22=fsY2;
Vf2=sparse(busNum,1);
If2=sparse(busNum,1);
Vf0=sparse(busNum,1);
If0=sparse(busNum,1);
%准备序矩阵
%平衡节点置0置1
fsY2(Balance,:)=0;
fsY2(:,Balance)=0;
fsY2=fsY2+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
%平衡节点置0置1
fsY0(Balance,:)=0;
fsY0(:,Balance)=0;
fsY0=fsY0+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
%%LU分解
[fsY0L,fsY0U,fsY0P,fsY0Q,fsY0R]=lu(fsY0);
[fsY2L,fsY2U,fsY2P,fsY2Q,fsY2R]=lu(fsY2);
%算初始补偿功率
tic
VoltpA=sparse(ones(busNum,1));
VoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi);
VoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi);
while(k<=kmax && maxD> EPS)
k=k+1;
%把补偿电容看作负荷
SA=VoltpA.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,1),busNum,1));
SB=VoltpB.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,2),busNum,1));
SC=VoltpC.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,3),busNum,1));
iterPD=PD+real(SA+SB+SC)/3;
iterQD=QD+imag(SA+SB+SC)/3;
iterPhaseASpotLoadP=phaseASpotLoadP+real(SA);
iterPhaseBSpotLoadP=phaseBSpotLoadP+real(SB);
iterPhaseCSpotLoadP=phaseCSpotLoadP+real(SC);
iterPhaseASpotLoadQ=phaseASpotLoadQ+imag(SA);
iterPhaseBSpotLoadQ=phaseBSpotLoadQ+imag(SB);
iterPhaseCSpotLoadQ=phaseCSpotLoadQ+imag(SC);
% %全部转换为负荷电流
% CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA);
% CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB);
% CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC);
% %转换为序电流
% f012=Tp2f*conj([CurpA';CurpB';CurpC']);
% %把三序电流分离出来
% If0=conj(f012(1,:)');
% If1=conj(f012(2,:)');
% If2=conj(f012(3,:)');
% %试着算一下正序电流
% fsY11*V1;
% %形成负荷序电流的测量值
% mIf0=If0;
% mIf1=If1;
% mIf1(3)=-mIf1(2);
% mIf2=If2;
% %计算
% fsY11=fsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,bus
% Num);%这里要置0置1否则是奇异的
%%做最小二乘法
[dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance,busNum, ...
PQi,PG,QG,QGi,iterPD,iterQD,Vmf1,Vaf1,fsY1amp,fsY1ang,r,c,Vf2,If2,Vf0,If0);%不平衡量
maxD=max(abs([dP;dQ;]));
jaco=Jacobi(Balance,busNum,QGi,Vmf1,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵
[dV, dVangle]=Solv(busNum,jaco,dP,dQ);%解出修正量
[Vmf1, Vaf1]=Modify(Vmf1,Vaf1,dV,dVangle,1);
fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD));
%转换为三相电压
VoltpABC=Tp2f\conj([ Vf0'; (Vmf1.*exp(1j*Vaf1))'; Vf2']);%用Tp2f\ 代替Tf2p*
VoltpA=conj(VoltpABC(1,:)');
CurpA=-conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA);
VoltpB=conj(VoltpABC(2,:)');
CurpB=-conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB);
VoltpC=conj(VoltpABC(3,:)');
CurpC=-conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC);
f012=Tp2f*conj([CurpA';CurpB';CurpC']);
If0=conj(f012(1,:)');
If1=conj(f012(2,:)');
If2=conj(f012(3,:)');
If0(Balance)=0;
If2(Balance)=0;
%Vf0=fsY0\If0;
Vf0=fsY0Q*(fsY0U\(fsY0L\(fsY0P*(fsY0R\If0))));
%Vf2=fsY2\If2;
Vf2=fsY2Q*(fsY2U\(fsY2L\(fsY2P*(fsY2R\If2))));
fprintf('迭代时间%f\n',toc);
%
end
FortiscueToc=toc;
fprintf('Fortiscue法计算时间 %f\n',FortiscueToc);
Vf1=Vmf1.*exp(1j*Vaf1);
%%
(Vf0.*conj(fsY00*Vf0)+Vf1.*conj(fsY11*Vf1)+Vf2.*conj(fsY22*Vf2))*3;%包含补偿电容的功率
conj(Tf2p*[If0(2);If1(2);If2(2)]).*(Tf2p*[Vf0(2);Vf1(2);Vf2(2)]);
IpABC=Tf2p*conj([If0';If1';If2']);
%转换回三相电压
VoltpABC=Tf2p*conj([ Vf0'; Vf1'; Vf2']);
disp([' A B C'])
full(abs(VoltpABC'))
fprintf('节点号对应\n');
disp([setIJ,nodeNum ])
%%检查反推回去的功率是否满足
ub=checkSSatisfied(Balance,phaseABCY,VoltpABC, ...
phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP, ...
phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ );
fprintf('最大不平衡量为%f\n\n',full(max(abs(ub))))
%% 用牛顿法求解begin
% fprintf('开始牛顿法迭代\n');
% [r,c,GB]=find(phaseABCY);
% Y=abs(phaseABCY);
% Yangle=angle(GB);
% Vp3=sparse(ones(busNum*3,1));%给电压赋初值
% Vp3(2:3:end)=Vp3(2:3:end)*exp(1j*-120/180*pi);
% Vp3(3:3:end)=Vp3(3:3:end)*exp(1j*+120/180*pi);
% PQi3P=zeros(length(PQi)*3,1);
% PQi3P(1:3:end)=(PQi-1)*3+1;
% PQi3P(2:3:end)=(PQi-1)*3+2;
% PQi3P(3:3:end)=(PQi-1)*3+3;
% PG=0;
% QG=0;
% PD3P=sparse(busNum*3,1);
% QD3P=sparse(busNum*3,1);
% PD3P(1:3:end)=phaseASpotLoadP;
% PD3P(2:3:end)=phaseBSpotLoadP;
% PD3P(3:3:end)=phaseCSpotLoadP;
% QD3P(1:3:end)=phaseASpotLoadQ;
% QD3P(2:3:end)=phaseBSpotLoadQ;
% QD3P(3:3:end)=phaseCSpotLoadQ;
% QGi3P=zeros(length(QGi)*3,1);
% QGi3P(1:3:end)=(QGi-1)*3+1;
% QGi3P(2:3:end)=(QGi-1)*3+2;
% QGi3P(3:3:end)=(QGi-1)*3+3;
% Vp3m=abs(Vp3);
% Vp3a=angle(Vp3);
% Balance3P=zeros(length(Balance)*3,1);
% Balance3P(1:3:end)=(Balance-1)*3+1;
% Balance3P(2:3:end)=(Balance-1)*3+2;
% Balance3P(3:3:end)=(Balance-1)*3+3;
% Vp3a((Balance-1)*3+1)=0;
% Vp3a((Balance-1)*3+2)=-120/180*pi;
% Vp3a((Balance-1)*3+3)=+120/180*pi;
% k=0;
% maxD=10000;
% tic
% while(k<=kmax && maxD> EPS)
% k=k+1;
% [dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance3P,busNum*3, ...
% PQi3P,PG,QG,QGi3P,PD3P,QD3P,Vp3m,Vp3a,Y,Yangle,r,c,0,0,0,0);
% maxD=max(abs([dP;dQ;]));
% jaco=Jacobi(Balance3P,busNum*3,QGi3P,Vp3m,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵
% [dV, dVangle]=Solv(busNum*3,jaco,dP,dQ);%解出修正量
% [Vp3m, Vp3a]=Modify(Vp3m,Vp3a,dV,dVangle,1);
% fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD));
% fprintf('迭代时间%f\n',toc);
% end
% NewtonToc=toc;
% fprintf('牛顿法计算时间 %f\n',NewtonToc);
% fprintf('加速比为%f\n',NewtonToc/FortiscueToc);
% VoltpA=Vp3m(1:3:end).*exp(1j*Vp3a(1:3:end));
% VoltpB=Vp3m(2:3:end).*exp(1j*Vp3a(2:3:end));
% VoltpC=Vp3m(3:3:end).*exp(1j*Vp3a(3:3:end));
%% 用牛顿法求解end
%% 开始进入状态估计
%准备量测量
iterPhaseASpotLoadP=phaseASpotLoadP;
iterPhaseBSpotLoadP=phaseBSpotLoadP;
iterPhaseCSpotLoadP=phaseCSpotLoadP;
iterPhaseASpotLoadQ=phaseASpotLoadQ;
iterPhaseBSpotLoadQ=phaseBSpotLoadQ;
iterPhaseCSpotLoadQ=phaseCSpotLoadQ;
%全部转换为负荷电流
CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA);
CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB);
CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC);
%转换为序电流
f012=Tp2f*conj([CurpA';CurpB';CurpC']);
%把三序电流分离出来
If0=conj(f012(1,:)');
If1=conj(f012(2,:)');
If2=conj(f012(3,:)');
%试着算一下正序电流
% fsY11*V1;
%形成负荷序电流的测量值
mIf0=If0;
mIf1=-If1;
% mIf1(3)=-mIf1(2);
mIf2=If2;
% fsY11(:,Balance)=0;
% fsY11(Balance,:)=0;
% fsY11=fsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
% mIf1(3)=1;
%平衡节点电流
BalI1r=real(-sum(mIf1));
BalI1i=imag(-sum(mIf1));
inv(fsY11)*(mIf1);
measurement=-mIf1(Loadi);
clear PD QD PG QG;
%状态量
% SEVoltpA=sparse(ones(busNum,1));
% SEVoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi);
% SEVoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi);
% SEphaseASpotLoadP=zeros(length(phaseASpotLoadP),1);
% SEphaseBSpotLoadP=zeros(length(phaseBSpotLoadP),1);
% SEphaseCSpotLoadP=zeros(length(phaseCSpotLoadP),1);
% SEphaseASpotLoadQ=zeros(length(phaseASpotLoadQ),1);
% SEphaseBSpotLoadQ=zeros(length(phaseBSpotLoadQ),1);
% SEphaseCSpotLoadQ=zeros(length(phaseCSpotLoadQ),1);
%
% SEVmf1=sparse(ones(busNum,1));
% SEVaf1=sparse(zeros(busNum,1));
% SEPD=sparse(zeros(busNum,1));
% SEQD=sparse(zeros(busNum,1));
[ V1r,V1i,I1r,I1i ]=IPMLoop(measurement,BalI1r,BalI1i,busNum,Loadi,fsY1,Balance );
%检查目标函数
f=sum([real(measurement);imag(measurement)]-[-I1r;-I1i]);