289 lines
9.7 KiB
Matlab
289 lines
9.7 KiB
Matlab
%% 利用先把负荷转换为电流的方法。这个方法要求知道电压量。
|
||
%
|
||
clc
|
||
clear
|
||
lineZ=readLineZ('feeder13\lineParameter.txt');
|
||
[ fsY0, fsY1, fsY2,phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP ...
|
||
phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ,setIJ,nodeNum,Balance,phaseABCY ...
|
||
cap]=dataRead(lineZ,'feeder13\data1.txt');
|
||
a=exp(1j*2*pi/3);
|
||
Tp2f=1/3*[1 1 1;
|
||
1 a a^2;
|
||
1 a^2 a];
|
||
Tp2f=sparse(Tp2f);
|
||
Tf2p=inv(Tp2f);
|
||
fsY1amp=abs(fsY1);
|
||
[r,c,fsY1ang]=find(fsY1);
|
||
fsY1ang=angle(fsY1ang);
|
||
Pabc=phaseASpotLoadP+phaseBSpotLoadP+phaseCSpotLoadP;
|
||
Qabc=phaseASpotLoadQ+phaseBSpotLoadQ+phaseCSpotLoadQ;
|
||
busNum=length(phaseASpotLoadP);
|
||
%给序电压赋初值
|
||
Vmf1=sparse(ones(busNum,1));
|
||
Vaf1=sparse(zeros(busNum,1));
|
||
%先求解正序的
|
||
PQi=nodeNum;
|
||
PG=sparse(busNum,1);
|
||
QG=sparse(busNum,1);
|
||
QGi=[Balance];
|
||
PD=Pabc/3;
|
||
QD=Qabc/3;
|
||
Loadi=find(PD~=0);
|
||
maxD=100000;% 最大不平衡量
|
||
EPS=1e-5;
|
||
k=0;
|
||
kmax=20;
|
||
fsY11=fsY1;
|
||
fsY00=fsY0;
|
||
fsY22=fsY2;
|
||
Vf2=sparse(busNum,1);
|
||
If2=sparse(busNum,1);
|
||
Vf0=sparse(busNum,1);
|
||
If0=sparse(busNum,1);
|
||
%准备序矩阵
|
||
%平衡节点置0置1
|
||
fsY2(Balance,:)=0;
|
||
fsY2(:,Balance)=0;
|
||
fsY2=fsY2+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
|
||
%平衡节点置0置1
|
||
fsY0(Balance,:)=0;
|
||
fsY0(:,Balance)=0;
|
||
fsY0=fsY0+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
|
||
%%LU分解
|
||
[fsY0L,fsY0U,fsY0P,fsY0Q,fsY0R]=lu(fsY0);
|
||
[fsY2L,fsY2U,fsY2P,fsY2Q,fsY2R]=lu(fsY2);
|
||
%算初始补偿功率
|
||
tic
|
||
VoltpA=sparse(ones(busNum,1));
|
||
VoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi);
|
||
VoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi);
|
||
while(k<=kmax && maxD> EPS)
|
||
k=k+1;
|
||
%把补偿电容看作负荷
|
||
SA=VoltpA.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,1),busNum,1));
|
||
SB=VoltpB.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,2),busNum,1));
|
||
SC=VoltpC.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,3),busNum,1));
|
||
iterPD=PD+real(SA+SB+SC)/3;
|
||
iterQD=QD+imag(SA+SB+SC)/3;
|
||
iterPhaseASpotLoadP=phaseASpotLoadP+real(SA);
|
||
iterPhaseBSpotLoadP=phaseBSpotLoadP+real(SB);
|
||
iterPhaseCSpotLoadP=phaseCSpotLoadP+real(SC);
|
||
iterPhaseASpotLoadQ=phaseASpotLoadQ+imag(SA);
|
||
iterPhaseBSpotLoadQ=phaseBSpotLoadQ+imag(SB);
|
||
iterPhaseCSpotLoadQ=phaseCSpotLoadQ+imag(SC);
|
||
%全部转换为负荷电流
|
||
CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA);
|
||
CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB);
|
||
CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC);
|
||
%转换为序电流
|
||
f012=Tp2f*conj([CurpA';CurpB';CurpC']);
|
||
%把三序电流分离出来
|
||
If0=conj(f012(1,:)');
|
||
If1=conj(f012(2,:)');
|
||
If2=conj(f012(3,:)');
|
||
%得到三序电压
|
||
V012=Tp2f*conj([VoltpA';VoltpB';VoltpC']);
|
||
%分离出三序电压
|
||
V0=conj(V012(1,:)');
|
||
V1=conj(V012(2,:)');
|
||
V2=conj(V012(3,:)');
|
||
%试着算一下正序电流
|
||
fsY11*V1;
|
||
%形成负荷序电流的测量值
|
||
mIf0=If0;
|
||
mIf1=If1;
|
||
mIf1(3)=-mIf1(2);
|
||
% mIf1(1)=0.02;
|
||
% mIf1(3)=0.03;
|
||
Loadi=[ 1 2 3];
|
||
mIf2=If2;
|
||
%计算
|
||
fsY11=fsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);%这里要置0,置1,否则是奇异的
|
||
%%做最小二乘法
|
||
%先做正序的
|
||
Z=[
|
||
-real(mIf1(Loadi));%这里要加-号,因为用的Z是注入电流
|
||
-imag(mIf1(Loadi));%这里要加-号,因为用的Z是注入电流
|
||
%加电压量测
|
||
[1 1 1]';
|
||
];
|
||
H=fsY11(Loadi,:);
|
||
H=[
|
||
-real(H),imag(H),;
|
||
-imag(H),-real(H),;
|
||
eye(3),eye(3);
|
||
];
|
||
% J=fsY11(Loadi,:);
|
||
% J=[
|
||
% conj(-real(J))',-conj(imag(J))';
|
||
% conj(imag(J))',-conj(real(J))';
|
||
% ];
|
||
J=conj(H');
|
||
%J*Z+J*H*X=0 ->J*H*X=-J*Z
|
||
X=-inv(J*H)*J*Z;
|
||
% X=inv(conj(H)'*H)*conj(H)'*Z;
|
||
Xr=X(1:length(X)/2);
|
||
Xi=X(length(X)/2+1:end);
|
||
Xri=Xr+1j*Xi;
|
||
fsY11*Xri;
|
||
[dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance,busNum, ...
|
||
PQi,PG,QG,QGi,iterPD,iterQD,Vmf1,Vaf1,fsY1amp,fsY1ang,r,c,Vf2,If2,Vf0,If0);%不平衡量
|
||
maxD=max(abs([dP;dQ;]));
|
||
jaco=Jacobi(Balance,busNum,QGi,Vmf1,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵
|
||
[dV, dVangle]=Solv(busNum,jaco,dP,dQ);%解出修正量
|
||
[Vmf1, Vaf1]=Modify(Vmf1,Vaf1,dV,dVangle,1);
|
||
fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD));
|
||
%转换为三相电压
|
||
VoltpABC=Tp2f\conj([ Vf0'; (Vmf1.*exp(1j*Vaf1))'; Vf2']);%用Tp2f\ 代替Tf2p*
|
||
VoltpA=conj(VoltpABC(1,:)');
|
||
|
||
|
||
|
||
If0(Balance)=0;
|
||
If2(Balance)=0;
|
||
%Vf0=fsY0\If0;
|
||
Vf0=fsY0Q*(fsY0U\(fsY0L\(fsY0P*(fsY0R\If0))));
|
||
%Vf2=fsY2\If2;
|
||
Vf2=fsY2Q*(fsY2U\(fsY2L\(fsY2P*(fsY2R\If2))));
|
||
fprintf('迭代时间%f\n',toc);
|
||
|
||
%
|
||
end
|
||
FortiscueToc=toc;
|
||
fprintf('Fortiscue法计算时间 %f\n',FortiscueToc);
|
||
Vf1=Vmf1.*exp(1j*Vaf1);
|
||
%%
|
||
(Vf0.*conj(fsY00*Vf0)+Vf1.*conj(fsY11*Vf1)+Vf2.*conj(fsY22*Vf2))*3;%包含补偿电容的功率
|
||
conj(Tf2p*[If0(2);If1(2);If2(2)]).*(Tf2p*[Vf0(2);Vf1(2);Vf2(2)]);
|
||
IpABC=Tf2p*conj([If0';If1';If2']);
|
||
%转换回三相电压
|
||
VoltpABC=Tf2p*conj([ Vf0'; Vf1'; Vf2']);
|
||
disp([' A B C'])
|
||
full(abs(VoltpABC'))
|
||
fprintf('节点号对应\n');
|
||
disp([setIJ,nodeNum ])
|
||
%%检查反推回去的功率是否满足
|
||
ub=checkSSatisfied(Balance,phaseABCY,VoltpABC, ...
|
||
phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP, ...
|
||
phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ );
|
||
fprintf('最大不平衡量为%f\n\n',full(max(abs(ub))))
|
||
%% 用牛顿法求解begin
|
||
% fprintf('开始牛顿法迭代\n');
|
||
% [r,c,GB]=find(phaseABCY);
|
||
% Y=abs(phaseABCY);
|
||
% Yangle=angle(GB);
|
||
% Vp3=sparse(ones(busNum*3,1));%给电压赋初值
|
||
% Vp3(2:3:end)=Vp3(2:3:end)*exp(1j*-120/180*pi);
|
||
% Vp3(3:3:end)=Vp3(3:3:end)*exp(1j*+120/180*pi);
|
||
% PQi3P=zeros(length(PQi)*3,1);
|
||
% PQi3P(1:3:end)=(PQi-1)*3+1;
|
||
% PQi3P(2:3:end)=(PQi-1)*3+2;
|
||
% PQi3P(3:3:end)=(PQi-1)*3+3;
|
||
% PG=0;
|
||
% QG=0;
|
||
% PD3P=sparse(busNum*3,1);
|
||
% QD3P=sparse(busNum*3,1);
|
||
% PD3P(1:3:end)=phaseASpotLoadP;
|
||
% PD3P(2:3:end)=phaseBSpotLoadP;
|
||
% PD3P(3:3:end)=phaseCSpotLoadP;
|
||
% QD3P(1:3:end)=phaseASpotLoadQ;
|
||
% QD3P(2:3:end)=phaseBSpotLoadQ;
|
||
% QD3P(3:3:end)=phaseCSpotLoadQ;
|
||
% QGi3P=zeros(length(QGi)*3,1);
|
||
% QGi3P(1:3:end)=(QGi-1)*3+1;
|
||
% QGi3P(2:3:end)=(QGi-1)*3+2;
|
||
% QGi3P(3:3:end)=(QGi-1)*3+3;
|
||
% Vp3m=abs(Vp3);
|
||
% Vp3a=angle(Vp3);
|
||
% Balance3P=zeros(length(Balance)*3,1);
|
||
% Balance3P(1:3:end)=(Balance-1)*3+1;
|
||
% Balance3P(2:3:end)=(Balance-1)*3+2;
|
||
% Balance3P(3:3:end)=(Balance-1)*3+3;
|
||
% Vp3a((Balance-1)*3+1)=0;
|
||
% Vp3a((Balance-1)*3+2)=-120/180*pi;
|
||
% Vp3a((Balance-1)*3+3)=+120/180*pi;
|
||
% k=0;
|
||
% maxD=10000;
|
||
% tic
|
||
% while(k<=kmax && maxD> EPS)
|
||
% k=k+1;
|
||
% [dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance3P,busNum*3, ...
|
||
% PQi3P,PG,QG,QGi3P,PD3P,QD3P,Vp3m,Vp3a,Y,Yangle,r,c,0,0,0,0);
|
||
% maxD=max(abs([dP;dQ;]));
|
||
% jaco=Jacobi(Balance3P,busNum*3,QGi3P,Vp3m,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵
|
||
% [dV, dVangle]=Solv(busNum*3,jaco,dP,dQ);%解出修正量
|
||
% [Vp3m, Vp3a]=Modify(Vp3m,Vp3a,dV,dVangle,1);
|
||
% fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD));
|
||
% fprintf('迭代时间%f\n',toc);
|
||
% end
|
||
% NewtonToc=toc;
|
||
% fprintf('牛顿法计算时间 %f\n',NewtonToc);
|
||
% fprintf('加速比为%f\n',NewtonToc/FortiscueToc);
|
||
% VoltpA=Vp3m(1:3:end).*exp(1j*Vp3a(1:3:end));
|
||
% VoltpB=Vp3m(2:3:end).*exp(1j*Vp3a(2:3:end));
|
||
% VoltpC=Vp3m(3:3:end).*exp(1j*Vp3a(3:3:end));
|
||
%% 用牛顿法求解end
|
||
%% 开始进入状态估计
|
||
clear PD QD PG QG;
|
||
%状态量
|
||
SEVoltpA=sparse(ones(busNum,1));
|
||
SEVoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi);
|
||
SEVoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi);
|
||
SEphaseASpotLoadP=zeros(length(phaseASpotLoadP),1);
|
||
SEphaseBSpotLoadP=zeros(length(phaseBSpotLoadP),1);
|
||
SEphaseCSpotLoadP=zeros(length(phaseCSpotLoadP),1);
|
||
SEphaseASpotLoadQ=zeros(length(phaseASpotLoadQ),1);
|
||
SEphaseBSpotLoadQ=zeros(length(phaseBSpotLoadQ),1);
|
||
SEphaseCSpotLoadQ=zeros(length(phaseCSpotLoadQ),1);
|
||
%
|
||
SEVmf1=sparse(ones(busNum,1));
|
||
SEVaf1=sparse(zeros(busNum,1));
|
||
SEPD=sparse(zeros(busNum,1));
|
||
SEQD=sparse(zeros(busNum,1));
|
||
KK=0;
|
||
plotGap=zeros(1,60);
|
||
%初始化
|
||
%状态量为 SEPD SEQD SEVmf1 SEVaf1
|
||
RestraintCount=length(SEVmf1)+length(Loadi)*2;
|
||
ContrlCount=length(SEVmf1)*2+length(Loadi)*2;
|
||
CenterA=0.1;
|
||
Init_Z=sparse(ones(RestraintCount,1));
|
||
Init_W=sparse(-1*ones(RestraintCount,1));
|
||
Init_L=1*sparse(ones(RestraintCount,1));
|
||
Init_U=1*sparse(ones(RestraintCount,1));
|
||
Init_Y=sparse(2*busNum,1);%等式约束乘子
|
||
Gap=(Init_L'*Init_Z-Init_U'*Init_W);
|
||
PG=sparse(busNum,1);
|
||
PG(Balance)=0.1105;
|
||
QG=sparse(busNum,1);
|
||
QG(Balance)=0.0984;
|
||
SEPD(2)=0.1105;
|
||
SEQD(2)=0.0984;
|
||
while Gap>1e-5 && KK<20
|
||
KK=KK+1;
|
||
Init_u=Gap/2/RestraintCount*CenterA;
|
||
deltH=func_deltH(busNum,SEVmf1,fsY1amp,SEVaf1,r,c,fsY1ang,Loadi);
|
||
deltG=func_deltG(busNum,Loadi);
|
||
L_1Z=diag(Init_Z./Init_L);
|
||
U_1W=diag(Init_W./Init_U);
|
||
deltdeltF=func_deltdeltF(SEPD,ContrlCount);
|
||
ddh=func_ddh(SEVmf1,Init_Y,busNum,fsY1amp,SEVaf1,r,c,fsY1ang,Loadi,ContrlCount);
|
||
ddg=func_ddg();
|
||
deltF=func_deltF(SEPD,ContrlCount);
|
||
Luu=Init_U.*Init_W+Init_u*ones(RestraintCount,1);
|
||
Lul=Init_L.*Init_Z-Init_u*ones(RestraintCount,1);
|
||
Mat_G=FormG(SEVmf1,SEPD,SEQD,Loadi);
|
||
Mat_H=FormH(busNum,SEVmf1,PG,SEPD,QG,SEQD,fsY1amp,SEVaf1,r,c,fsY1ang);
|
||
Ly=Mat_H;
|
||
Lz=FormLz(Mat_G,Init_L,busNum,Loadi);
|
||
Lw=FormLw(Mat_G,Init_U,busNum,Loadi);
|
||
Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W);
|
||
YY=FormYY(Lul,Lz,Ly,Luu,Lw,Lx);
|
||
%% 开始解方程
|
||
plotGap(KK)=Gap;
|
||
fprintf('迭代次数 %d Gap %f\n',KK,plotGap(KK));
|
||
XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,Lx,Balance,busNum,Loadi);
|
||
[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX,ContrlCount,RestraintCount,busNum);
|
||
[Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,SEVmf1,SEVaf1,SEPD,SEQD]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,SEVmf1,SEVaf1,ContrlCount,Balance,busNum,SEPD,SEQD,Loadi);
|
||
Gap=(Init_L'*Init_Z-Init_U'*Init_W);
|
||
end |