295 lines
9.9 KiB
Matlab
295 lines
9.9 KiB
Matlab
%% 利用先把负荷转换为电流的方法。这个方法要求知道电压量。
|
||
%
|
||
close all
|
||
clc
|
||
clear
|
||
lineZ=readLineZ('feeder13\lineParameter.txt');
|
||
[ fsY0, fsY1, fsY2,phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP ...
|
||
phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ,setIJ,nodeNum,Balance,phaseABCY ...
|
||
cap]=dataRead(lineZ,'feeder13\data1.txt');
|
||
a=exp(1j*2*pi/3);
|
||
Tp2f=1/3*[1 1 1;
|
||
1 a a^2;
|
||
1 a^2 a];
|
||
Tp2f=sparse(Tp2f);
|
||
Tf2p=inv(Tp2f);
|
||
fsY1amp=abs(fsY1);
|
||
[r,c,fsY1ang]=find(fsY1);
|
||
fsY1ang=angle(fsY1ang);
|
||
Pabc=phaseASpotLoadP+phaseBSpotLoadP+phaseCSpotLoadP;
|
||
Qabc=phaseASpotLoadQ+phaseBSpotLoadQ+phaseCSpotLoadQ;
|
||
busNum=length(phaseASpotLoadP);
|
||
%给序电压赋初值
|
||
Vmf1=sparse(ones(busNum,1));
|
||
Vaf1=sparse(zeros(busNum,1));
|
||
%先求解正序的
|
||
PQi=nodeNum;
|
||
PG=sparse(busNum,1);
|
||
QG=sparse(busNum,1);
|
||
QGi=[Balance];
|
||
PD=Pabc/3;
|
||
QD=Qabc/3;
|
||
Loadi=find(PD~=0);
|
||
maxD=100000;% 最大不平衡量
|
||
EPS=1e-5;
|
||
k=0;
|
||
kmax=20;
|
||
fsY11=fsY1;
|
||
fsY00=fsY0;
|
||
fsY22=fsY2;
|
||
Vf2=sparse(busNum,1);
|
||
If2=sparse(busNum,1);
|
||
Vf0=sparse(busNum,1);
|
||
If0=sparse(busNum,1);
|
||
%准备序矩阵
|
||
%平衡节点置0置1
|
||
fsY2(Balance,:)=0;
|
||
fsY2(:,Balance)=0;
|
||
fsY2=fsY2+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
|
||
%平衡节点置0置1
|
||
fsY0(Balance,:)=0;
|
||
fsY0(:,Balance)=0;
|
||
fsY0=fsY0+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
|
||
%%LU分解
|
||
[fsY0L,fsY0U,fsY0P,fsY0Q,fsY0R]=lu(fsY0);
|
||
[fsY2L,fsY2U,fsY2P,fsY2Q,fsY2R]=lu(fsY2);
|
||
%算初始补偿功率
|
||
tic
|
||
VoltpA=sparse(ones(busNum,1));
|
||
VoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi);
|
||
VoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi);
|
||
|
||
|
||
while(k<=kmax && maxD> EPS)
|
||
k=k+1;
|
||
%把补偿电容看作负荷
|
||
SA=VoltpA.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,1),busNum,1));
|
||
SB=VoltpB.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,2),busNum,1));
|
||
SC=VoltpC.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,3),busNum,1));
|
||
%先不要电容
|
||
SA=0;
|
||
SB=0;
|
||
SC=0;
|
||
iterPD=PD+real(SA+SB+SC)/3;
|
||
iterQD=QD+imag(SA+SB+SC)/3;
|
||
iterPhaseASpotLoadP=phaseASpotLoadP+real(SA);
|
||
iterPhaseBSpotLoadP=phaseBSpotLoadP+real(SB);
|
||
iterPhaseCSpotLoadP=phaseCSpotLoadP+real(SC);
|
||
iterPhaseASpotLoadQ=phaseASpotLoadQ+imag(SA);
|
||
iterPhaseBSpotLoadQ=phaseBSpotLoadQ+imag(SB);
|
||
iterPhaseCSpotLoadQ=phaseCSpotLoadQ+imag(SC);
|
||
% %全部转换为负荷电流
|
||
% CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA);
|
||
% CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB);
|
||
% CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC);
|
||
% %转换为序电流
|
||
% f012=Tp2f*conj([CurpA';CurpB';CurpC']);
|
||
% %把三序电流分离出来
|
||
% If0=conj(f012(1,:)');
|
||
% If1=conj(f012(2,:)');
|
||
% If2=conj(f012(3,:)');
|
||
% %试着算一下正序电流
|
||
% fsY11*V1;
|
||
% %形成负荷序电流的测量值
|
||
% mIf0=If0;
|
||
% mIf1=If1;
|
||
% mIf1(3)=-mIf1(2);
|
||
% mIf2=If2;
|
||
% %计算
|
||
% fsY11=fsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,bus
|
||
% Num);%这里要置0,置1,否则是奇异的
|
||
%%做最小二乘法
|
||
[dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance,busNum, ...
|
||
PQi,PG,QG,QGi,iterPD,iterQD,Vmf1,Vaf1,fsY1amp,fsY1ang,r,c,Vf2,If2,Vf0,If0);%不平衡量
|
||
maxD=max(abs([dP;dQ;]));
|
||
jaco=Jacobi(Balance,busNum,QGi,Vmf1,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵
|
||
[dV, dVangle]=Solv(busNum,jaco,dP,dQ);%解出修正量
|
||
[Vmf1, Vaf1]=Modify(Vmf1,Vaf1,dV,dVangle,1);
|
||
fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD));
|
||
%转换为三相电压
|
||
VoltpABC=Tp2f\conj([ Vf0'; (Vmf1.*exp(1j*Vaf1))'; Vf2']);%用Tp2f\ 代替Tf2p*
|
||
VoltpA=conj(VoltpABC(1,:)');
|
||
CurpA=-conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA);
|
||
VoltpB=conj(VoltpABC(2,:)');
|
||
CurpB=-conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB);
|
||
VoltpC=conj(VoltpABC(3,:)');
|
||
CurpC=-conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC);
|
||
f012=Tp2f*conj([CurpA';CurpB';CurpC']);
|
||
If0=conj(f012(1,:)');
|
||
If1=conj(f012(2,:)');
|
||
If2=conj(f012(3,:)');
|
||
|
||
|
||
If0(Balance)=0;
|
||
If2(Balance)=0;
|
||
%Vf0=fsY0\If0;
|
||
Vf0=fsY0Q*(fsY0U\(fsY0L\(fsY0P*(fsY0R\If0))));
|
||
%Vf2=fsY2\If2;
|
||
Vf2=fsY2Q*(fsY2U\(fsY2L\(fsY2P*(fsY2R\If2))));
|
||
fprintf('迭代时间%f\n',toc);
|
||
|
||
%
|
||
end
|
||
FortiscueToc=toc;
|
||
fprintf('Fortiscue法计算时间 %f\n',FortiscueToc);
|
||
Vf1=Vmf1.*exp(1j*Vaf1);
|
||
%%
|
||
(Vf0.*conj(fsY00*Vf0)+Vf1.*conj(fsY11*Vf1)+Vf2.*conj(fsY22*Vf2))*3;%包含补偿电容的功率
|
||
conj(Tf2p*[If0(2);If1(2);If2(2)]).*(Tf2p*[Vf0(2);Vf1(2);Vf2(2)]);
|
||
IpABC=Tf2p*conj([If0';If1';If2']);
|
||
%转换回三相电压
|
||
VoltpABC=Tf2p*conj([ Vf0'; Vf1'; Vf2']);
|
||
disp([' A B C'])
|
||
full(abs(VoltpABC'))
|
||
fprintf('节点号对应\n');
|
||
disp([setIJ,nodeNum ])
|
||
%%检查反推回去的功率是否满足
|
||
ub=checkSSatisfied(Balance,phaseABCY,VoltpABC, ...
|
||
phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP, ...
|
||
phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ );
|
||
fprintf('最大不平衡量为%f\n\n',full(max(abs(ub))))
|
||
%% 开始进入状态估计
|
||
% clear PD QD PG QG;
|
||
%准备量测量
|
||
iterPhaseASpotLoadP=phaseASpotLoadP;
|
||
iterPhaseBSpotLoadP=phaseBSpotLoadP;
|
||
iterPhaseCSpotLoadP=phaseCSpotLoadP;
|
||
iterPhaseASpotLoadQ=phaseASpotLoadQ;
|
||
iterPhaseBSpotLoadQ=phaseBSpotLoadQ;
|
||
iterPhaseCSpotLoadQ=phaseCSpotLoadQ;
|
||
%全部转换为负荷电流
|
||
VoltpA=sparse(ones(busNum,1));
|
||
VoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi);
|
||
VoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi);
|
||
CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA);
|
||
CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB);
|
||
CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC);
|
||
%转换为序电流
|
||
f012=Tp2f*conj([CurpA';CurpB';CurpC']);
|
||
%把三序电流分离出来
|
||
If0=conj(f012(1,:)');
|
||
If1=conj(f012(2,:)');%负荷电流
|
||
If2=conj(f012(3,:)');
|
||
%试着算一下正序电流
|
||
% fsY11*V1;
|
||
%形成负荷序电流的测量值
|
||
%% 设定量测误差
|
||
sigma=0.03;
|
||
mIf0=-If0;
|
||
mIf1=-If1;%mIf1是注入电流,相当于发电机电流
|
||
mIf2=-If2;
|
||
%% 先算正序的
|
||
%平衡节点电流
|
||
fprintf('正序\n');
|
||
BalI1r=real(-sum(mIf1));
|
||
BalI1i=imag(-sum(mIf1));
|
||
%电压
|
||
%制作量测量
|
||
mfsY11=fsY11;
|
||
mfsY11(:,Balance)=0;
|
||
mfsY11(Balance,:)=0;
|
||
mfsY11=mfsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
|
||
rV1=inv(mfsY11)*(mIf1)+1;
|
||
sigmaV1=normrnd(0,sigma,length(Loadi),1);
|
||
V1measurement=rV1(Loadi).*(1+sigmaV1);
|
||
wV1r=abs(real( rV1(Loadi).*sigmaV1 ));
|
||
wV1i=abs(imag( rV1(Loadi).*sigmaV1 ));
|
||
sigmaI1=normrnd(0,sigma,length(Loadi),1);
|
||
I1measurement=mIf1(Loadi).*(1+sigmaI1);%测量值是等效发电机电流
|
||
wI1r=abs( real(mIf1(Loadi).*sigmaI1) );
|
||
wI1i=abs( imag(mIf1(Loadi).*sigmaI1) );
|
||
% [ V1r,V1i,I1r,I1i ]=IPMLoop(V1measurement,wV1r,wV1i,I1measurement,wI1r,wI1i,BalI1r,BalI1i,busNum,Loadi,fsY11,Balance,1 );
|
||
% f=sum(([real(I1measurement);imag(I1measurement)]-[I1r;I1i]).^2)+sum((real(rV1)-V1r).^2)+sum((imag(rV1)-V1i).^2);
|
||
% fprintf('目标值 %f\n',full(f));
|
||
%% 算负序的
|
||
fprintf('负序\n');
|
||
BalI2r=real(-sum(mIf2));
|
||
BalI2i=imag(-sum(mIf2));
|
||
%电压
|
||
%制作量测量
|
||
mfsY22=fsY22;
|
||
mfsY22(:,Balance)=0;
|
||
mfsY22(Balance,:)=0;
|
||
mfsY22=mfsY22+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
|
||
rV2=inv(mfsY22)*(mIf2);
|
||
sigmaV2=normrnd(0,sigma,length(Loadi),1);
|
||
V2measurement=rV2(Loadi).*(1+sigmaV2);
|
||
wV2r=abs(real( rV2(Loadi).*sigmaV2 ));
|
||
wV2i=abs(imag( rV2(Loadi).*sigmaV2 ));
|
||
sigmaI2=normrnd(0,sigma,length(Loadi),1);
|
||
I2measurement=mIf2(Loadi).*(1+sigmaI2);%测量值是等效发电机电流
|
||
wI2r=abs( real(mIf2(Loadi).*sigmaI2) );
|
||
wI2i=abs( imag(mIf2(Loadi).*sigmaI2) );
|
||
% [ V2r,V2i,I2r,I2i ]=IPMLoop(V2measurement,wV2r,wV2i,I2measurement,wI2r,wI2i,BalI2r,BalI2i,busNum,Loadi,fsY22,Balance,0 );
|
||
% f=sum(([real(I2measurement);imag(I2measurement)]-[I2r;I2i]).^2)+sum((real(rV2)-V2r).^2)+sum((imag(rV2)-V2i).^2);
|
||
% fprintf('目标值 %f\n',full(f));
|
||
%% 算零序
|
||
fprintf('零序\n');
|
||
BalI0r=real(-sum(mIf0));
|
||
BalI0i=imag(-sum(mIf0));
|
||
%电压
|
||
%制作量测量
|
||
mfsY00=fsY00;
|
||
mfsY00(:,Balance)=0;
|
||
mfsY00(Balance,:)=0;
|
||
mfsY00=mfsY00+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);
|
||
rV0=inv(mfsY00)*(mIf0);
|
||
sigmaV0=normrnd(0,sigma,length(Loadi),1);
|
||
V0measurement=rV0(Loadi).*(1+sigmaV0);
|
||
wV0r=abs(real( rV0(Loadi).*sigmaV0 ));
|
||
wV0i=abs(imag( rV0(Loadi).*sigmaV0 ));
|
||
sigmaI0=normrnd(0,sigma,length(Loadi),1);
|
||
I0measurement=mIf0(Loadi).*(1+sigmaI0);%测量值是等效发电机电流
|
||
wI0r=abs( real(mIf0(Loadi).*sigmaI0) );
|
||
wI0i=abs( imag(mIf0(Loadi).*sigmaI0) );
|
||
% matlabpool local 3
|
||
tic
|
||
for II=1:3
|
||
|
||
if II==1
|
||
[ V1r,V1i,I1r,I1i ]=IPMLoop(V1measurement,wV1r,wV1i,I1measurement,wI1r,wI1i,BalI1r,BalI1i,busNum,Loadi,fsY11,Balance,1 );
|
||
end
|
||
if II==2
|
||
[ V2r,V2i,I2r,I2i ]=IPMLoop(V2measurement,wV2r,wV2i,I2measurement,wI2r,wI2i,BalI2r,BalI2i,busNum,Loadi,fsY22,Balance,0 );
|
||
end
|
||
if II==3
|
||
[ V0r,V0i,I0r,I0i ]=IPMLoop(V0measurement,wV0r,wV0i,I0measurement,wI0r,wI0i,BalI0r,BalI0i,busNum,Loadi,fsY00,Balance,0 );
|
||
end
|
||
|
||
end
|
||
toc
|
||
% matlabpool close
|
||
|
||
% f=sum(([real(I0measurement);imag(I0measurement)]-[I0r;I0i]).^2)+sum((real(rV0)-V0r).^2)+sum((imag(rV0)-V0i).^2);
|
||
% fprintf('目标值 %f\n',full(f));
|
||
%% 把三序合成三相
|
||
% 三相电压
|
||
SEVf0=V0r+1j*V0i;
|
||
SEVf1=V1r+1j*V1i;
|
||
SEVf2=V2r+1j*V2i;
|
||
SEVoltpABC=Tf2p*conj([ SEVf0'; SEVf1'; SEVf2']);
|
||
% SEVoltpABC2=Tf2p*conj([ rV0'; rV1'; rV2']);
|
||
% 三序电流
|
||
SEIf0=I0r+1j*I0i;
|
||
SEIf1=I1r+1j*I1i;
|
||
SEIf2=I2r+1j*I2i;
|
||
SEIpABC=full(Tf2p*conj([SEIf0';SEIf1(1:3)';SEIf2']));
|
||
%看一下差多少
|
||
VError=(full(abs(VoltpABC))-abs(SEVoltpABC))./abs(VoltpABC)*100;
|
||
VError=reshape(VError,size(VError,1)*size(VError,2),1);
|
||
barPlot( VError, 10,['相对误差%'],['分布密度'],['电压幅值']);
|
||
% 三相负荷
|
||
rThreeLoad=[ phaseASpotLoadP'+1j*phaseASpotLoadQ';
|
||
phaseBSpotLoadP'+1j*phaseBSpotLoadQ';
|
||
phaseCSpotLoadP'+1j*phaseCSpotLoadQ';
|
||
];
|
||
rThreeLoad=rThreeLoad(:,setxor(1:size(SEVoltpABC,2),Balance));
|
||
SEThreeLoad=SEVoltpABC(:,setxor(1:size(SEVoltpABC,2),Balance)).*conj(-SEIpABC);
|
||
phaseLoadPError=real(rThreeLoad-SEThreeLoad)./real(rThreeLoad)*100;
|
||
phaseLoadQError=imag(rThreeLoad-SEThreeLoad)./imag(rThreeLoad)*100;
|
||
phaseLoadPError=reshape(phaseLoadPError,size(phaseLoadPError,1)*size(phaseLoadPError,2),1);
|
||
phaseLoadQError=reshape(phaseLoadQError,size(phaseLoadQError,1)*size(phaseLoadQError,2),1);
|
||
figure()
|
||
barPlot( phaseLoadPError, 10,['相对误差%'],['分布密度'],['有功负荷误差']);
|
||
figure()
|
||
barPlot( phaseLoadQError, 10,'相对误差%','分布密度','无功负荷误差'); |