%% 利用先把负荷转换为电流的方法。这个方法要求知道电压量。 % clc clear lineZ=readLineZ('feeder13\lineParameter.txt'); [ fsY0, fsY1, fsY2,phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP ... phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ,setIJ,nodeNum,Balance,phaseABCY ... cap]=dataRead(lineZ,'feeder13\data1.txt'); a=exp(1j*2*pi/3); Tp2f=1/3*[1 1 1; 1 a a^2; 1 a^2 a]; Tp2f=sparse(Tp2f); Tf2p=inv(Tp2f); fsY1amp=abs(fsY1); [r,c,fsY1ang]=find(fsY1); fsY1ang=angle(fsY1ang); Pabc=phaseASpotLoadP+phaseBSpotLoadP+phaseCSpotLoadP; Qabc=phaseASpotLoadQ+phaseBSpotLoadQ+phaseCSpotLoadQ; busNum=length(phaseASpotLoadP); %给序电压赋初值 Vmf1=sparse(ones(busNum,1)); Vaf1=sparse(zeros(busNum,1)); %先求解正序的 PQi=nodeNum; PG=sparse(busNum,1); QG=sparse(busNum,1); QGi=[Balance]; PD=Pabc/3; QD=Qabc/3; Loadi=find(PD~=0); maxD=100000;% 最大不平衡量 EPS=1e-5; k=0; kmax=20; fsY11=fsY1; fsY00=fsY0; fsY22=fsY2; Vf2=sparse(busNum,1); If2=sparse(busNum,1); Vf0=sparse(busNum,1); If0=sparse(busNum,1); %准备序矩阵 %平衡节点置0置1 fsY2(Balance,:)=0; fsY2(:,Balance)=0; fsY2=fsY2+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum); %平衡节点置0置1 fsY0(Balance,:)=0; fsY0(:,Balance)=0; fsY0=fsY0+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum); %%LU分解 [fsY0L,fsY0U,fsY0P,fsY0Q,fsY0R]=lu(fsY0); [fsY2L,fsY2U,fsY2P,fsY2Q,fsY2R]=lu(fsY2); %算初始补偿功率 tic VoltpA=sparse(ones(busNum,1)); VoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi); VoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi); while(k<=kmax && maxD> EPS) k=k+1; %把补偿电容看作负荷 SA=VoltpA.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,1),busNum,1)); SB=VoltpB.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,2),busNum,1)); SC=VoltpC.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,3),busNum,1)); iterPD=PD+real(SA+SB+SC)/3; iterQD=QD+imag(SA+SB+SC)/3; iterPhaseASpotLoadP=phaseASpotLoadP+real(SA); iterPhaseBSpotLoadP=phaseBSpotLoadP+real(SB); iterPhaseCSpotLoadP=phaseCSpotLoadP+real(SC); iterPhaseASpotLoadQ=phaseASpotLoadQ+imag(SA); iterPhaseBSpotLoadQ=phaseBSpotLoadQ+imag(SB); iterPhaseCSpotLoadQ=phaseCSpotLoadQ+imag(SC); % %全部转换为负荷电流 % CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA); % CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB); % CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC); % %转换为序电流 % f012=Tp2f*conj([CurpA';CurpB';CurpC']); % %把三序电流分离出来 % If0=conj(f012(1,:)'); % If1=conj(f012(2,:)'); % If2=conj(f012(3,:)'); % %试着算一下正序电流 % fsY11*V1; % %形成负荷序电流的测量值 % mIf0=If0; % mIf1=If1; % mIf1(3)=-mIf1(2); % mIf2=If2; % %计算 % fsY11=fsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,bus % Num);%这里要置0,置1,否则是奇异的 %%做最小二乘法 [dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance,busNum, ... PQi,PG,QG,QGi,iterPD,iterQD,Vmf1,Vaf1,fsY1amp,fsY1ang,r,c,Vf2,If2,Vf0,If0);%不平衡量 maxD=max(abs([dP;dQ;])); jaco=Jacobi(Balance,busNum,QGi,Vmf1,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵 [dV, dVangle]=Solv(busNum,jaco,dP,dQ);%解出修正量 [Vmf1, Vaf1]=Modify(Vmf1,Vaf1,dV,dVangle,1); fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD)); %转换为三相电压 VoltpABC=Tp2f\conj([ Vf0'; (Vmf1.*exp(1j*Vaf1))'; Vf2']);%用Tp2f\ 代替Tf2p* VoltpA=conj(VoltpABC(1,:)'); CurpA=-conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA); VoltpB=conj(VoltpABC(2,:)'); CurpB=-conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB); VoltpC=conj(VoltpABC(3,:)'); CurpC=-conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC); f012=Tp2f*conj([CurpA';CurpB';CurpC']); If0=conj(f012(1,:)'); If1=conj(f012(2,:)'); If2=conj(f012(3,:)'); If0(Balance)=0; If2(Balance)=0; %Vf0=fsY0\If0; Vf0=fsY0Q*(fsY0U\(fsY0L\(fsY0P*(fsY0R\If0)))); %Vf2=fsY2\If2; Vf2=fsY2Q*(fsY2U\(fsY2L\(fsY2P*(fsY2R\If2)))); fprintf('迭代时间%f\n',toc); % end FortiscueToc=toc; fprintf('Fortiscue法计算时间 %f\n',FortiscueToc); Vf1=Vmf1.*exp(1j*Vaf1); %% (Vf0.*conj(fsY00*Vf0)+Vf1.*conj(fsY11*Vf1)+Vf2.*conj(fsY22*Vf2))*3;%包含补偿电容的功率 conj(Tf2p*[If0(2);If1(2);If2(2)]).*(Tf2p*[Vf0(2);Vf1(2);Vf2(2)]); IpABC=Tf2p*conj([If0';If1';If2']); %转换回三相电压 VoltpABC=Tf2p*conj([ Vf0'; Vf1'; Vf2']); disp([' A B C']) full(abs(VoltpABC')) fprintf('节点号对应\n'); disp([setIJ,nodeNum ]) %%检查反推回去的功率是否满足 ub=checkSSatisfied(Balance,phaseABCY,VoltpABC, ... phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP, ... phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ ); fprintf('最大不平衡量为%f\n\n',full(max(abs(ub)))) %% 用牛顿法求解begin % fprintf('开始牛顿法迭代\n'); % [r,c,GB]=find(phaseABCY); % Y=abs(phaseABCY); % Yangle=angle(GB); % Vp3=sparse(ones(busNum*3,1));%给电压赋初值 % Vp3(2:3:end)=Vp3(2:3:end)*exp(1j*-120/180*pi); % Vp3(3:3:end)=Vp3(3:3:end)*exp(1j*+120/180*pi); % PQi3P=zeros(length(PQi)*3,1); % PQi3P(1:3:end)=(PQi-1)*3+1; % PQi3P(2:3:end)=(PQi-1)*3+2; % PQi3P(3:3:end)=(PQi-1)*3+3; % PG=0; % QG=0; % PD3P=sparse(busNum*3,1); % QD3P=sparse(busNum*3,1); % PD3P(1:3:end)=phaseASpotLoadP; % PD3P(2:3:end)=phaseBSpotLoadP; % PD3P(3:3:end)=phaseCSpotLoadP; % QD3P(1:3:end)=phaseASpotLoadQ; % QD3P(2:3:end)=phaseBSpotLoadQ; % QD3P(3:3:end)=phaseCSpotLoadQ; % QGi3P=zeros(length(QGi)*3,1); % QGi3P(1:3:end)=(QGi-1)*3+1; % QGi3P(2:3:end)=(QGi-1)*3+2; % QGi3P(3:3:end)=(QGi-1)*3+3; % Vp3m=abs(Vp3); % Vp3a=angle(Vp3); % Balance3P=zeros(length(Balance)*3,1); % Balance3P(1:3:end)=(Balance-1)*3+1; % Balance3P(2:3:end)=(Balance-1)*3+2; % Balance3P(3:3:end)=(Balance-1)*3+3; % Vp3a((Balance-1)*3+1)=0; % Vp3a((Balance-1)*3+2)=-120/180*pi; % Vp3a((Balance-1)*3+3)=+120/180*pi; % k=0; % maxD=10000; % tic % while(k<=kmax && maxD> EPS) % k=k+1; % [dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance3P,busNum*3, ... % PQi3P,PG,QG,QGi3P,PD3P,QD3P,Vp3m,Vp3a,Y,Yangle,r,c,0,0,0,0); % maxD=max(abs([dP;dQ;])); % jaco=Jacobi(Balance3P,busNum*3,QGi3P,Vp3m,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵 % [dV, dVangle]=Solv(busNum*3,jaco,dP,dQ);%解出修正量 % [Vp3m, Vp3a]=Modify(Vp3m,Vp3a,dV,dVangle,1); % fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD)); % fprintf('迭代时间%f\n',toc); % end % NewtonToc=toc; % fprintf('牛顿法计算时间 %f\n',NewtonToc); % fprintf('加速比为%f\n',NewtonToc/FortiscueToc); % VoltpA=Vp3m(1:3:end).*exp(1j*Vp3a(1:3:end)); % VoltpB=Vp3m(2:3:end).*exp(1j*Vp3a(2:3:end)); % VoltpC=Vp3m(3:3:end).*exp(1j*Vp3a(3:3:end)); %% 用牛顿法求解end %% 开始进入状态估计 clear PD QD PG QG; %准备量测量 iterPhaseASpotLoadP=phaseASpotLoadP; iterPhaseBSpotLoadP=phaseBSpotLoadP; iterPhaseCSpotLoadP=phaseCSpotLoadP; iterPhaseASpotLoadQ=phaseASpotLoadQ; iterPhaseBSpotLoadQ=phaseBSpotLoadQ; iterPhaseCSpotLoadQ=phaseCSpotLoadQ; %全部转换为负荷电流 CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA); CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB); CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC); %转换为序电流 f012=Tp2f*conj([CurpA';CurpB';CurpC']); %把三序电流分离出来 If0=conj(f012(1,:)'); If1=conj(f012(2,:)'); If2=conj(f012(3,:)'); %试着算一下正序电流 % fsY11*V1; %形成负荷序电流的测量值 mIf0=-If0; mIf1=-If1; % mIf1(3)=-mIf1(2); mIf2=-If2; % fsY11(:,Balance)=0; % fsY11(Balance,:)=0; % fsY11=fsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum); % mIf1(3)=1; %% 先算正序的 %平衡节点电流 BalI1r=real(-sum(mIf1)); BalI1i=imag(-sum(mIf1)); % inv(fsY11)*(mIf1); measurement=-mIf1(Loadi); [ V1r,V1i,I1r,I1i ]=IPMLoop(measurement,BalI1r,BalI1i,busNum,Loadi,fsY1,Balance,1 ); f=sum(([real(measurement);imag(measurement)]-[-I1r;-I1i]).^2); %% 算负序的 BalI2r=real(-sum(mIf2)); BalI2i=imag(-sum(mIf2)); measurement=-mIf2(Loadi); [ V2r,V2i,I2r,I2i ]=IPMLoop(measurement,BalI2r,BalI2i,busNum,Loadi,fsY2,Balance,1 ); f=sum([real(measurement);imag(measurement)]-[-I2r;-I2i]); %状态量 % SEVoltpA=sparse(ones(busNum,1)); % SEVoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi); % SEVoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi); % SEphaseASpotLoadP=zeros(length(phaseASpotLoadP),1); % SEphaseBSpotLoadP=zeros(length(phaseBSpotLoadP),1); % SEphaseCSpotLoadP=zeros(length(phaseCSpotLoadP),1); % SEphaseASpotLoadQ=zeros(length(phaseASpotLoadQ),1); % SEphaseBSpotLoadQ=zeros(length(phaseBSpotLoadQ),1); % SEphaseCSpotLoadQ=zeros(length(phaseCSpotLoadQ),1); % % SEVmf1=sparse(ones(busNum,1)); % SEVaf1=sparse(zeros(busNum,1)); % SEPD=sparse(zeros(busNum,1)); % SEQD=sparse(zeros(busNum,1)); %检查目标函数