%% 利用先把负荷转换为电流的方法。这个方法要求知道电压量。 % clc clear lineZ=readLineZ('feeder13\lineParameter.txt'); [ fsY0, fsY1, fsY2,phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP ... phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ,setIJ,nodeNum,Balance,phaseABCY ... cap]=dataRead(lineZ,'feeder13\data1.txt'); a=exp(1j*2*pi/3); Tp2f=1/3*[1 1 1; 1 a a^2; 1 a^2 a]; Tp2f=sparse(Tp2f); Tf2p=inv(Tp2f); fsY1amp=abs(fsY1); [r,c,fsY1ang]=find(fsY1); fsY1ang=angle(fsY1ang); Pabc=phaseASpotLoadP+phaseBSpotLoadP+phaseCSpotLoadP; Qabc=phaseASpotLoadQ+phaseBSpotLoadQ+phaseCSpotLoadQ; busNum=length(phaseASpotLoadP); %给序电压赋初值 Vmf1=sparse(ones(busNum,1)); Vaf1=sparse(zeros(busNum,1)); %先求解正序的 PQi=nodeNum; PG=sparse(busNum,1); QG=sparse(busNum,1); QGi=[Balance]; PD=Pabc/3; QD=Qabc/3; Loadi=find(PD~=0); maxD=100000;% 最大不平衡量 EPS=1e-5; k=0; kmax=20; fsY11=fsY1; fsY00=fsY0; fsY22=fsY2; Vf2=sparse(busNum,1); If2=sparse(busNum,1); Vf0=sparse(busNum,1); If0=sparse(busNum,1); %准备序矩阵 %平衡节点置0置1 fsY2(Balance,:)=0; fsY2(:,Balance)=0; fsY2=fsY2+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum); %平衡节点置0置1 fsY0(Balance,:)=0; fsY0(:,Balance)=0; fsY0=fsY0+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum); %%LU分解 [fsY0L,fsY0U,fsY0P,fsY0Q,fsY0R]=lu(fsY0); [fsY2L,fsY2U,fsY2P,fsY2Q,fsY2R]=lu(fsY2); %算初始补偿功率 tic VoltpA=sparse(ones(busNum,1)); VoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi); VoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi); while(k<=kmax && maxD> EPS) k=k+1; %把补偿电容看作负荷 SA=VoltpA.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,1),busNum,1)); SB=VoltpB.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,2),busNum,1)); SC=VoltpC.*conj(VoltpA.*sparse(cap.capNode,1,1j*cap.capB(:,3),busNum,1)); iterPD=PD+real(SA+SB+SC)/3; iterQD=QD+imag(SA+SB+SC)/3; iterPhaseASpotLoadP=phaseASpotLoadP+real(SA); iterPhaseBSpotLoadP=phaseBSpotLoadP+real(SB); iterPhaseCSpotLoadP=phaseCSpotLoadP+real(SC); iterPhaseASpotLoadQ=phaseASpotLoadQ+imag(SA); iterPhaseBSpotLoadQ=phaseBSpotLoadQ+imag(SB); iterPhaseCSpotLoadQ=phaseCSpotLoadQ+imag(SC); %全部转换为负荷电流 CurpA=conj((iterPhaseASpotLoadP+1j*iterPhaseASpotLoadQ)./VoltpA); CurpB=conj((iterPhaseBSpotLoadP+1j*iterPhaseBSpotLoadQ)./VoltpB); CurpC=conj((iterPhaseCSpotLoadP+1j*iterPhaseCSpotLoadQ)./VoltpC); %转换为序电流 f012=Tp2f*conj([CurpA';CurpB';CurpC']); %把三序电流分离出来 If0=conj(f012(1,:)'); If1=conj(f012(2,:)'); If2=conj(f012(3,:)'); %得到三序电压 V012=Tp2f*conj([VoltpA';VoltpB';VoltpC']); %分离出三序电压 V0=conj(V012(1,:)'); V1=conj(V012(2,:)'); V2=conj(V012(3,:)'); %试着算一下正序电流 fsY11*V1; %形成负荷序电流的测量值 mIf0=If0; mIf1=If1; mIf1(1)=0.02; mIf1(3)=0.03; Loadi=[ 1 2 3]; mIf2=If2; %计算 fsY11=fsY11+sparse(Balance,Balance,ones(length(Balance),1),busNum,busNum);%这里要置0,置1,否则是奇异的 %%做最小二乘法 %先做正序的 Z=[%这里要加-号,因为用的Z是注入电流 -real(mIf1(Loadi)); -imag(mIf1(Loadi)); ]; H=fsY11(Loadi,:); H=[ -real(H),imag(H); -imag(H),-real(H); ]; % J=fsY11(Loadi,:); % J=[ % conj(-real(J))',-conj(imag(J))'; % conj(imag(J))',-conj(real(J))'; % ]; J=conj(H'); %J*Z+J*H*X=0 ->J*H*X=-J*Z X=-inv(J*H)*J*Z; % X=inv(conj(H)'*H)*conj(H)'*Z; Xr=X(1:length(X)/2); Xi=X(length(X)/2+1:end); Xri=Xr+1j*Xi; fsY11*Xri; [dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance,busNum, ... PQi,PG,QG,QGi,iterPD,iterQD,Vmf1,Vaf1,fsY1amp,fsY1ang,r,c,Vf2,If2,Vf0,If0);%不平衡量 maxD=max(abs([dP;dQ;])); jaco=Jacobi(Balance,busNum,QGi,Vmf1,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵 [dV, dVangle]=Solv(busNum,jaco,dP,dQ);%解出修正量 [Vmf1, Vaf1]=Modify(Vmf1,Vaf1,dV,dVangle,1); fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD)); %转换为三相电压 VoltpABC=Tp2f\conj([ Vf0'; (Vmf1.*exp(1j*Vaf1))'; Vf2']);%用Tp2f\ 代替Tf2p* VoltpA=conj(VoltpABC(1,:)'); If0(Balance)=0; If2(Balance)=0; %Vf0=fsY0\If0; Vf0=fsY0Q*(fsY0U\(fsY0L\(fsY0P*(fsY0R\If0)))); %Vf2=fsY2\If2; Vf2=fsY2Q*(fsY2U\(fsY2L\(fsY2P*(fsY2R\If2)))); fprintf('迭代时间%f\n',toc); % end FortiscueToc=toc; fprintf('Fortiscue法计算时间 %f\n',FortiscueToc); Vf1=Vmf1.*exp(1j*Vaf1); %% (Vf0.*conj(fsY00*Vf0)+Vf1.*conj(fsY11*Vf1)+Vf2.*conj(fsY22*Vf2))*3;%包含补偿电容的功率 conj(Tf2p*[If0(2);If1(2);If2(2)]).*(Tf2p*[Vf0(2);Vf1(2);Vf2(2)]); IpABC=Tf2p*conj([If0';If1';If2']); %转换回三相电压 VoltpABC=Tf2p*conj([ Vf0'; Vf1'; Vf2']); disp([' A B C']) full(abs(VoltpABC')) fprintf('节点号对应\n'); disp([setIJ,nodeNum ]) %%检查反推回去的功率是否满足 ub=checkSSatisfied(Balance,phaseABCY,VoltpABC, ... phaseASpotLoadP,phaseBSpotLoadP,phaseCSpotLoadP, ... phaseASpotLoadQ,phaseBSpotLoadQ,phaseCSpotLoadQ ); fprintf('最大不平衡量为%f\n\n',full(max(abs(ub)))) %% 用牛顿法求解begin % fprintf('开始牛顿法迭代\n'); % [r,c,GB]=find(phaseABCY); % Y=abs(phaseABCY); % Yangle=angle(GB); % Vp3=sparse(ones(busNum*3,1));%给电压赋初值 % Vp3(2:3:end)=Vp3(2:3:end)*exp(1j*-120/180*pi); % Vp3(3:3:end)=Vp3(3:3:end)*exp(1j*+120/180*pi); % PQi3P=zeros(length(PQi)*3,1); % PQi3P(1:3:end)=(PQi-1)*3+1; % PQi3P(2:3:end)=(PQi-1)*3+2; % PQi3P(3:3:end)=(PQi-1)*3+3; % PG=0; % QG=0; % PD3P=sparse(busNum*3,1); % QD3P=sparse(busNum*3,1); % PD3P(1:3:end)=phaseASpotLoadP; % PD3P(2:3:end)=phaseBSpotLoadP; % PD3P(3:3:end)=phaseCSpotLoadP; % QD3P(1:3:end)=phaseASpotLoadQ; % QD3P(2:3:end)=phaseBSpotLoadQ; % QD3P(3:3:end)=phaseCSpotLoadQ; % QGi3P=zeros(length(QGi)*3,1); % QGi3P(1:3:end)=(QGi-1)*3+1; % QGi3P(2:3:end)=(QGi-1)*3+2; % QGi3P(3:3:end)=(QGi-1)*3+3; % Vp3m=abs(Vp3); % Vp3a=angle(Vp3); % Balance3P=zeros(length(Balance)*3,1); % Balance3P(1:3:end)=(Balance-1)*3+1; % Balance3P(2:3:end)=(Balance-1)*3+2; % Balance3P(3:3:end)=(Balance-1)*3+3; % Vp3a((Balance-1)*3+1)=0; % Vp3a((Balance-1)*3+2)=-120/180*pi; % Vp3a((Balance-1)*3+3)=+120/180*pi; % k=0; % maxD=10000; % tic % while(k<=kmax && maxD> EPS) % k=k+1; % [dP, dQ, YdotSinVolt, YdotCosVolt, diag_Volt_YdotSin, diag_Volt_YdotCos]=Unbalance(Balance3P,busNum*3, ... % PQi3P,PG,QG,QGi3P,PD3P,QD3P,Vp3m,Vp3a,Y,Yangle,r,c,0,0,0,0); % maxD=max(abs([dP;dQ;])); % jaco=Jacobi(Balance3P,busNum*3,QGi3P,Vp3m,YdotSinVolt,YdotCosVolt,diag_Volt_YdotSin,diag_Volt_YdotCos);%雅克比矩阵 % [dV, dVangle]=Solv(busNum*3,jaco,dP,dQ);%解出修正量 % [Vp3m, Vp3a]=Modify(Vp3m,Vp3a,dV,dVangle,1); % fprintf('第 %d 次迭代, 最大不平衡量为 %f\n',k,full(maxD)); % fprintf('迭代时间%f\n',toc); % end % NewtonToc=toc; % fprintf('牛顿法计算时间 %f\n',NewtonToc); % fprintf('加速比为%f\n',NewtonToc/FortiscueToc); % VoltpA=Vp3m(1:3:end).*exp(1j*Vp3a(1:3:end)); % VoltpB=Vp3m(2:3:end).*exp(1j*Vp3a(2:3:end)); % VoltpC=Vp3m(3:3:end).*exp(1j*Vp3a(3:3:end)); %% 用牛顿法求解end %% 开始进入状态估计 clear PD QD PG QG; %状态量 SEVoltpA=sparse(ones(busNum,1)); SEVoltpB=sparse(ones(busNum,1)).*exp(1j*-120/180*pi); SEVoltpC=sparse(ones(busNum,1)).*exp(1j*+120/180*pi); SEphaseASpotLoadP=zeros(length(phaseASpotLoadP),1); SEphaseBSpotLoadP=zeros(length(phaseBSpotLoadP),1); SEphaseCSpotLoadP=zeros(length(phaseCSpotLoadP),1); SEphaseASpotLoadQ=zeros(length(phaseASpotLoadQ),1); SEphaseBSpotLoadQ=zeros(length(phaseBSpotLoadQ),1); SEphaseCSpotLoadQ=zeros(length(phaseCSpotLoadQ),1); % SEVmf1=sparse(ones(busNum,1)); SEVaf1=sparse(zeros(busNum,1)); SEPD=sparse(zeros(busNum,1)); SEQD=sparse(zeros(busNum,1)); KK=0; plotGap=zeros(1,60); %初始化 %状态量为 SEPD SEQD SEVmf1 SEVaf1 RestraintCount=length(SEVmf1)+length(Loadi)*2; ContrlCount=length(SEVmf1)*2+length(Loadi)*2; CenterA=0.1; Init_Z=sparse(ones(RestraintCount,1)); Init_W=sparse(-1*ones(RestraintCount,1)); Init_L=1*sparse(ones(RestraintCount,1)); Init_U=1*sparse(ones(RestraintCount,1)); Init_Y=sparse(2*busNum,1);%等式约束乘子 Gap=(Init_L'*Init_Z-Init_U'*Init_W); PG=sparse(busNum,1); PG(Balance)=0.1105; QG=sparse(busNum,1); QG(Balance)=0.0984; SEPD(2)=0.1105; SEQD(2)=0.0984; while Gap>1e-5 && KK<20 KK=KK+1; Init_u=Gap/2/RestraintCount*CenterA; deltH=func_deltH(busNum,SEVmf1,fsY1amp,SEVaf1,r,c,fsY1ang,Loadi); deltG=func_deltG(busNum,Loadi); L_1Z=diag(Init_Z./Init_L); U_1W=diag(Init_W./Init_U); deltdeltF=func_deltdeltF(SEPD,ContrlCount); ddh=func_ddh(SEVmf1,Init_Y,busNum,fsY1amp,SEVaf1,r,c,fsY1ang,Loadi,ContrlCount); ddg=func_ddg(); deltF=func_deltF(SEPD,ContrlCount); Luu=Init_U.*Init_W+Init_u*ones(RestraintCount,1); Lul=Init_L.*Init_Z-Init_u*ones(RestraintCount,1); Mat_G=FormG(SEVmf1,SEPD,SEQD,Loadi); Mat_H=FormH(busNum,SEVmf1,PG,SEPD,QG,SEQD,fsY1amp,SEVaf1,r,c,fsY1ang); Ly=Mat_H; Lz=FormLz(Mat_G,Init_L,busNum,Loadi); Lw=FormLw(Mat_G,Init_U,busNum,Loadi); Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W); YY=FormYY(Lul,Lz,Ly,Luu,Lw,Lx); %% 开始解方程 plotGap(KK)=Gap; fprintf('迭代次数 %d Gap %f\n',KK,plotGap(KK)); XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,Lx,Balance,busNum,Loadi); [deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX,ContrlCount,RestraintCount,busNum); [Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,SEVmf1,SEVaf1,SEPD,SEQD]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,SEVmf1,SEVaf1,ContrlCount,Balance,busNum,SEPD,SEQD,Loadi); Gap=(Init_L'*Init_Z-Init_U'*Init_W); end